Programmes used for constructing spell data

Dale T. Mortensen Centre, Aarhus University —
Version 15/05/2025

Henning Bunzel and Mads Hejlesen

Department of Economics and Business Economics, Aarhus University, email hbun-
zel @econ.au.dk

mailto:hbunzel@econ.au.dk
mailto:hbunzel@econ.au.dk

Contents

| Programmes used for constructing spelldatal. 1
|Henning Bunzel and Mads Hejlesen |

1 Overview of spell datacode] 5
2 Raw Employment Spells| 7
[IntrodUChON]. .« .o vveeeee e et e e e 7

2 Dataset RAW EMPLOYMENTI.ot 7
2.1 Period 1985-2007]oooeiii e 9

2.2 _02_correction_dates_using_ MIAPNRM_2021_vl|....... 21

23 FROMZ2008]. .. .ooitee et 25

2.4 Checking_raw_employment_spells_v5|................. 28

B __FirmIdentifiers|.................. o 31
B InroduCtion].o v ettt e 31
[3.1 Workplaceidentifier| 32

g Spell-firmid] 32
4.1 Match a CVRNR on dataset RAW_EMPLOYMENT] 33

4.2 OK units and workplace variables|.................... 35

[Spelldataset SPELL E| ..., 37
15 Secondary employment subspell dataset SUBSPELL _E SE(] 44

6 SPETLE TN ..o e 45

[7 Yearly and Yearly Smoothed spells|. 47
..................... 47

8 SUBSPELL LOENt i 49

9 Constructing spell firm 1dentifiers|., 50
DT PUIPOSE. .- oo e 50

9.2 Spell firm identifier|.............. 50

9.3 Firm-id before 2008] 51

10 ANALYSIS OF IDAN _FIDA_MIA|

4 Contents

[Raw Unemploymentspells| 53
TT Appendix]. 61

112 Folder and programmes|........... L. 67
12.1 Description|.ooi 67

18 SUBSPELL MULT DSKOD
Abstract This book documents programmes used to construct spell datasets

Chapter 1
Overview of spell data code

The spell datasets are generated on project 702728 and all code, pdf, and datasets
are stored in directory SPELL. Table[I|shows the content of SPELL directory.

Table 1 SPELL directory

NAME CONTENT

ARCHIVE A copy of the last versions of spell code and datasets

DATASET The final and intermediate datasets. These datasets are documented in LMDG
datasets with the name SPELL_’spelldataset’or SUBSPELL _’subspelldataset’

DOCS Technical notes and utilities

LIBNAME Contains all subdirectories with datasets and program memes used for the current
version.

PDF All PDF files used for external documentation. Pdf files used for testing and internal

documentation are stored in the relevant programme subdirectory.
PROGRAMMES All codes used to generate the spell datasets. There exists a subdirectory for each
task used in the construction of the spells.
TIL.LECONAU_DB A copy of datasets to be shared with other projects

The directory PROGRAMMES has a subdirectory for each task in the construc-
tion of spells.

Table 2] shows the subdirectories of directory programmes .

And each subdirectory in the PROGRAMMES directory have the subdirecto-
ries shown in table EL These subdirectories contain all jobs to construct, check and
analyze the spells in this task.

Table [d] shows the spell datasets generated by project SPELL

6 Contents

Table 2 PROGRAMMES directory

Name Title

EMPLOYMENT_SPELLS The jobs create employment spells using datasets created by jobs in
RAW_EMPLOYMENT_OBS

E_U_N_SPELLS The jobs create spells showing transitions between employment, unemployment
and NOT in labour market. The jobs use datasets created by jobs in EMPLOY-
MENT_SPELLS and in UNEMPLOYMENT_SPELLS.

FIRM_ID The jobs create the firm_ids and workplace_ids used in spells.

RAW_EMPLOYMENT The jobs create raw employment records using datasets CONESR, RAS_.CONESR
and BFL

PERSONS_SPELLS The jobs create spells for persons with permanent address in Denmark

TIMELON The jobs create and estimate of hourly wage and number of hours work.

UNEMPLOYMENT_SPELLS The jobs create unemployment spells using datasets LC, SHSS, OF.

Table 3 Entries in SPELL subdirectories

NAME CONTENT

ANALYSIS jobs used to test and analyse source and final datasets
BEFORE2008 programmes processing data before 2008

CHECKS programmes checking data for a new year
FROM2008 programmes processing data from 2008

Table 4 SPELL datasets

Name Title programme
SPELLE Spells, Primary jobs with overlaps.

SPELL_E_N_.YEARLY_SMOOTH Yearly spells, E-, N- spells without overlaps.

SPELL.EUN Spells, E-U-N spells with overlaps.

SPELL_E_UN_YEARLY Yearly spells, E-, U-, N- spells with overlaps.

SPELL_E_UN_YEARLY_SMOOTH Spells, E-, U-, N- spells with overlaps.

RAW_UNEMPLOYMENT Spells, Unemployment with overlaps.

SPELL.U Spells formed from RAW_UNEMPLOYMENT without overlaps and gaps.
SUBSPELL_E_SEC Subspells with secondary jobs in SPELL_E

SUBSPELL_LOEN Subspells with wage and salary for SPELL_PRIM_EMPLOY.

SUBSPELL_MULT_DSKOD Subspells with multiple DSKOD for employment spells

Chapter 2
Raw Employment Spells

1 Introduction

The construction of employment spells consists of two major tasks. The first
task constructs RAW_EMPLOYMENT, Intermediate dataset for employment spells
formed from CONESR, RAS_CONESR and BFL, which is used in the second task
to construct SPELL_E, Spells, Primary jobs with overlaps. and SUBSPELL_E_SEC,
Subspells with secondary jobs in SPELL_E.

RAW_EMPLOYMENT contains all data needed to construct the employment
spells. It is constructed from CONESR, RAS_CONESR and BFL. The content has
been checked and harmonized over the years and transformed into a monthly
dataset. In a given month a worker may have one or more employments.

The statistical units are workplaces and persons. SENR identifies the unit that
reports taxable income.

We distinguish between SPELL_E, Spells, Primary jobs with overlaps. and SUB-
SPELL_E_SEC, Subspells with secondary jobs in SPELL_E, where primary employ-
ment in a given month for a given worker is defined as employment at the firm at
which the worker spends most working hours, aggregated over the current and the
two following months. The primary employment spells are merged with SPELL_U,
Spells formed from RAW_UNEMPLOYMENT without overlaps and gaps. resulting
in SPELL_E_U_N.

2 Dataset RAW_EMPLOYMENT

This section describes how we extract and prepare monthly raw employment records

from LMDG datasets CONESR(19884-2005), RAS_.CONESR(2006-2007), and BFL(2008-
) in order to have a unified dataset containing all relevant employment records from
which we can then compute the employment spells.

Table 5 List of Variables in Raw Employment

Contents

Variable name

Title

Description

AAR

ALDER
ANS_TYPE

ANS_ULTIMO_NOVEMBER

BOOL_JOB_ATP_SATS_KODE_MISSING

B_JOB_ATP_BELOEB

BOOL_JOB_LOEN

CVRNR

ERROR_DATES

JOB_ARB_NR

JOB_CVRNR

JOB_CVRNR_ESR

JOB_LOEN_BELOEB_SMAL

JOB_LOEN_TIMER_BEREGNET

JOB_LOEN_TIMER_BFL

JOB_SENR

JOB_SLUT_DATO

JOB_START_DATO

PNR

Year for the reference period of the
observation

Age, ultimo year

SPELL, Type of employment, 1: full-
time, 2: employment shorter than a
year, 3: two or moreemployments in
a year.

In SPELLS a boolean defining if a
spell of employment includes end-
of-november defined as the day,
1121.

A boolean defining if the ATP rate
code is missing.0: the value is
validl: the value is missing.

ATP contributions converted to
SATS B for all years.

A value characterizing the value of
JOB_LOEN_BELOEB_SMAL.
Encrypted legal unit identifier. Data
break 1994

SPELL, identifies the changes of
month and day in ANSFRA and
ANSTIL in dataset CONESR
Unique 10-digit ID number for an
establishment of a job

CVRNR on tax reports for the job,
see CVRNR.

CVR match on the SPELL dataset
using SENR in ESR_SE_CVR

Basic wage amount comprising
earned income without ATP contri-
bution and fringe benefits

SPELL, Estimated number of work-
ing hours

SPELL, Number of working hours
in BFL

SENR on tax reports

In SPELLS, the last day of an em-
ployment. ANS_TYPE equal to 1 or
2.

In SPELLS, the first day of an em-
ployment. ANS_-TYPE equal to 1 or
2.

Person identifier, encrypted CPRNR
number

Only for 1984-2007. It is com-
puted from ANSFRA, ANSTIL,

HELARKOD, EJANSNOV,
ANS2111k
If employed November 21.

If ATP contributions are missing

Defines if JOB_LOEN_BELOEB is
zero, negative or positive

RAS_CONESR is a selection from RAS covering the years 1985-1986. The
LMDG datasets exist in project 702728 folder ECONAU.
The variables in RAW_EMPLOYMENT are shown in Table[Sand in the documen-

tation of the dataset.

The core employment variables are shown in Table|[]
The structure and quality of the datasets (CONESR, RAS_.CONESR) and BFL
are very different. Therefore two different programmes are used.

Contents 9

Table 6 Core EMPLOYMENT variables

Name Title Description
JOB_LOEN_TIMER Number of paid wage hours in a job
PNR Person identifier, encrypted CPRNR

number
JOB_START_DATO In SPELLS, the first day of an em-

ployment. ANS_TYPE equal to 1 or

2.
JOB_TIME_LOEN_SMAL Average hourly earnings in Novem-

ber employment. Data break 2008.
JOB_SLUT_DATO In SPELLS, the last day of an em-

ployment. ANS_TYPE equal to 1 or
2.

2.1 Period 1985-2007

CONESR covers 1980-2005. The CONESR variables for the years 2006-2007 have
been added to the usual RAS. For the spell project the CONESR variables have
been extracted from RAS for the years 2006-2007. These variables are from the
yearly taxable income report. These datasets do not contain JOB_START_DATO,
JOB_SLUT_DATO, JOB_LOEN_TIMER, but a set of variables HELARKOD, ANS-
FRA, and ANSTIL which can be used to construct these variables.

JOB_START _DATO, JOB_SLUT_-DATO and JOB_LOEN_TIMER BEREGNET
are imputed, see below. A lot of obvious errors are fixed in HELARKOD, ANSFRA,
and ANSTIL and missing data is imputed. Finally the result is compared with the
ECONAU dataset MIAPNRM for the period 1997-2007. MIAPNRM is a monthly
dataset with an indicator for employment in a month for a person at a firm. Start-
date and End-date are made consistent with the MIAPNRM data.

JOB_LOEN_TIMER_BEREGNET is imputed from the ATP contribution which is
a step function of hours worked, see task TIMELOEN. The number of hours worked
is used to identify the primary employment in cases where a person works at several
establishments. For selecting primary employment, the number of hours worked is
preferred to payment received, because payment in a period often includes special
payments or payment earned in previous periods.

All records have a SENR.

The SPELL population is all persons 15 years and above living in Denmark. The
relevant persons are selected in task EMPLOYMENT programmes.

Five programmes construct the RAW_EMPLOYMENT dataset. They are described
below. Each job has several blocks.

The SAS libraries used for version 2021_v1 are listed in \ SPELL\ Library\ library.sas.

This SAS code also contains macros for:

* PDFSTART, initialize a new pdf document, defines colours, SAS PROC template
which defines format 10.0 for crosstabfreqs and proc onewayfreqs allowing all
digits for our large datasets.

* PDFEND

* DeleteDataset

10 Contents

e DeleteDatasetOnOff

* CreateTempDatasetOnOff If ON a dataset is copied to TEMP

e ComputeDecentiles Create a dataset with percentiles for a varible from a dataset

e ComputeDecentilesByVar Create a dataset with percentiles for a varible BY an-
other variables from a dataset

» TransposeComputedPercentiles

2.1.1 _00_driver_before 2008_2021_v1

The driver runs the programmes needed for generating the dataset RAW_EMPLOYMENT.
The driver job can be edited using the following SAS macro variables:

* [INOBS, controls how many records are read: max or an integer number.

* BOOL_DELETE, deletes temporary files after each step.

* BOOL_PDF_ON, controls generation of PDF files for description and debug.

e LIB_IN and NAME_IN_DATA define SAS library and file name for in data.

» LIB_OUT, library for storing permanent output data. Test and temporary data
are stored in \temp. Files in \temp must be deleted manually when they are not
needed in the job anymore.

e START_YEAR and END_YEAR determine the period for which the spells are
generated

2.1.2 01-extracting_conesr_before 2008_2021_v1

The structure of the records in CONESR and RAS_CONESR does not differ, but they
cover two different time periods.

» STEP 1 Extracts variables from CONESR and RAS_CONESR, see table[3]

e STEP 2 Computes B.JOB_ATP_BELOERB,

e STEP 3 Checks ANSFRA and ANSTIL. Records with no contradictions in
the values of the variables ANSFRA, ANSTIL, EJANSNOV, HELARKOD,
ANS2911K have ERROR_DATES set to 0 and ANS_TYPE is set to 1,2,3, see
below.

For all observations with a contradiction the most likely values for ANSFRA,
ANSTIL have determined. ANSFRA, ANSTIL are not changed but four new

variables are computed: NUM_ANSFRADD, NUM_ANSFRAMM, NUM_ANSTILDD,

NUM_ANSTILMM. These variables get a value for all records, hence ANS-
FRA and ANSTIL cannot be used later on to test for missing values. The edit-
ing is done here to make sure that the best values for NUM_ANSFRA and
NUM_ANSTIL are used for determining ANS_TYPE in STEP 4 and to make
sure that the correct values are used in STEP 4. All changes are documented by
the variable ERROR_DATES, see Table ??

e STEP 4 The variables ANS_TYPE, JOB_START_DATO and JOB_SLUT_DATO are
computed.

Contents 11

The final output dataset is RAW_EMPLOYMENT_CONESR_RAS in directory
RAWEBO07. The debug datasets are CONS_NO_ANS_TYPE and NO_JOB_ATP_SATSKODE.
See the documentation in the SAS code for temporary files generated.

It contains one macro:

Macro weekmax (aar) The macro determines the highest week number in a year.
Currently it is not used.

STEP 1. Extracts records from CONESR and RAS_CONESR. The dataset _01 _raw-
employment_I is constructed from CONESR and _01_raw-employment_ras_I from
RAS_CONESR by selecting variables for identifying persons and workplaces (PNR,
SENR, ARB_NR, DSKOD) wage, atp contributions, and information about employ-
ment spells (HELARKOD,ANS2911K,ESANSNOV,ANSFRA and ANSTIL.)

_01 _raw-employment_ras_I is used as indata and _0I _raw-employment_ras_2 is
created by changing ANSFRA and ANSTIL. ANSFRA and ANSTIL have type
"character $4° in 1980-2005, but type ’numeric, 4’ in RAS 2006-2007. It is con-
verted to character $4.

_01 _raw-employment_2 is constructed by appending _01_raw-employment_I and
_01_raw-employment_ras_2 and computing boolean variables for debugging and de-
scription:

* BOOL_JOB_LOEN
* BOOL_JOB_ATP_SATS_KODE_MISSING

STEP 2. Computes the variable B_JJOB_ATP_BELOEB The step has _0/_raw-
employment_2 as indata and generates _01 _raw-employment_3. For 1980-1990 dif-
ferent variables and rates are used over time, see Field Note: ATP. The ATP contri-
bution rate changes in 1982, 1988, 1990, 1996, and 2006.

The \temp file NO_JOB_ATP_SATS_KODE contains records with missing values
for JOB_ATP_SATS _KODE.

* For the period 1980-1981 JOB_ATP_BELOEB_SATSA is converted to SATSB.
» For the period 1982-1987 the programme uses JOB_ATP_BELOEB_SATSA witch
is equal to SATSB.
* For the period 1988-1989 SATSB plus SATSA converted to SATSB.
* For the period 1990-1995 SATSB plus SATSA converted to SATSB. The rates
have changed.
* For the period 1996-2005 the programme uses JOB_ATP_BELOEB and JOB_ATP_BIDRAG _SATS_KODE.
 For the period 2006-2007 the programme uses JOB_ATP_BELOEB and JOB_ATP_BIDRAG _SATS_KODE.
The rates have changed.

STEP 3. Corrects ANSFRA, ANSTIL AND HELARKOD The step has _01_raw-
employment-3 as indata and generates _0I _raw-employment 4.

In order to compute variables JOB_START_DATO and JOB_SLUT_DATO and
ANS_TYPE in STEP 4 the ANSFRA, ANSTIL dates are checked.

Each record is identified by (PNR, SENR, AAR) and each of these will be classi-
fied as

12 Contents

1. ANS_TYPE= 1: full year employment.
2. ANS_TYPE= 2: not full year employment but continuous employment.
3. ANS_TYPE= 3: not full year employment but two or more employments.

In general, identifying the three different types of employment is easy as long
as the employer follows the guidelines for reporting taxable income. Employment
of type 1 is marked by variable HELARKOD = 1 and no values for ANSFRA and
ANSTIL. Employment of type 2 is marked by filling out ANSFRA (employment
start-date) and ANSTIL (employment end-date), and employment of type 3 has
HELAARK=0 and ANSFRA and ANSTIL have no values.

A small fraction of records does not satisfy the guidelines. One example is
HELARKOD = 1, ANSFRA = 0101 and ANSTIL =1231 which clearly is a full-
year employment although ANSFRA and ANSTIL do not have missing values.

ANSFRA and ANSTIL have the format MMDD.

The variable ERROR_DATES identifies the changes made.

Finally, the dates are made valid by correcting DD to max value for a given
month.

Together with variable AAR they are used to construct JOB_START_DATO and
JOB_SLUT_DATO.

For the years 1998-2007 the dates are checked and updated using MIAPNRM, see
the \raw_employment \job_02_correcting_dates_using MIAPNRM 2021 _v1. ANS-
FRA and ANSTIL are not changed but four new variables are created NUM_ANSFRADD,
NUM_ANSFRAMM, NUM_ANSTILDD, and NUM_ANSTILMM.

The IF - THEN - ELSEIF structure used to check the ANSFRA, ANSTIL
is:

* ANS_TYPE 1: Full employment *

IF
HELARKOD =1
THEN
IF
at least one of ANSFRA, ANSTIL has a value
IF
ANSFRA has a missing value
ERROR_DATES =1’
set NUM_ANSFRA to default value 0101.
* ANSTIL must have a value *
unpack ANSTIL
ELSEIF

ANSTIL has a missing value
ERROR_DATES =2’

set NUM_ANSTIL to default value 1231
* ANSFRA must have a value *

Contents 13

unpack ANSFRA
ELSE
* Both ANSFRA and ANSTIL have a value *
unpack ANSFRA and ANSTIL

ELSE
* HELARKOD =0 *
IF

both ANSFRA and ANSTIL have a missing value
ANS_TYPE =3
set NUM_ANSFRA and NUM_ANSTIL to 0

ELSE

* One of or both ANSFRA and ANSTIL have a valid value *
ANS_TYPE =2

IF

ANSFRA has a missing value

* ANSTIL must have a valid date *
ERROR_DATES=13

set ANSFRA to default 0101.

ELSEIF

ANSTIL has a missing value

* ANSFRA must have a valid date*
ERROR_DATES =4

set ANSTIL to default value 1231
unpack ANSFRA

ELSE

* both ANSFRA and ANSTIL have valid dates *
ERROR_DATES =0

ANS_TYPE =2

unpack ANSFRA and ANSTIL

STEP 4. ANSFRA and ANSTIL have been recoded to NUM_ANS. The new
NUM_ANS variables are used to assign the most likely value to ANS_TYPE. The
variables JOB_START_DATO, JOB_SLUT_DATO and ANS_DAGE are computed.
The new NUM_ANS variables are checked for illegal values.

The IF - THEN structure used to compute ANS _TYPE :

IF
ANS_TYPE =1

14 Contents

THEN
IF NOT (NUM_ANSFRA = 0101 AND NUM_ANSTIL = 1231)

THEN
*trust the dates, change ANS_TYPE *
ERROR_DATES = 6
ANS_TYPE =2
HELARKOD =0

ELSE IF ANS_TYPE=2
IF(INUM_ANSFRA = 0101 AND NUM_ANSTIL = 1231)
THEN

*trust the dates, change ANS_TYPE *
ERROR_DATES =5

ANS_TYPE =1

HELARKOD =0

* type 2 check dates *

IF NUM_ANSFRAMM =0

THEN
ERROR_DATES =17
NUM_ANSFRAMM =1

IF NUM_ANSFRADD =0

THEN
ERROR_DATES =17
NUM_ANSFRADD = 1

IF NUM_ANSTILMM =0

THEN
ERROR_DATES =17
NUM_ANSTILMM = 12

IF NUM_ANSTILDD =0

THEN
ERROR_DATES =17
NUM_ANSTILDD =31

IF 12 < NUM_ANSFRAMM < =1

AND 1 < NUM_ANSFRADD < 12

THEN
ERROR_DATES =8
switch DD and MM
* gimilar for NUM_ANSTIL *

* type 2 check dates *

IF
FRAMM is 00 set it to 01
TILDD is 00 set it to 31
TILMM is 00 set it to 12
ERROR_DATES =17

Contents 15

IF
MM is in range [13,31] and DD is in range [1,12] for either FRA or TIL
dates the MM and DD are interchanged.
ERROR_DATES =8
IF
MM > 80 and DD is in range [1,12] for either FRA or TIL dates MM is
assumed to be year and DD to be month then DD is set to 1 for FRA and
DD is set to 31 for TIL.
ERROR_DATES =9
IF
MM > 12
for FRA then MM is set to 1 and DD to 0.
for TIL MM is set to 12 and DD to 31.
ERROR_DATES = 10
* after these changes based on MM, D may still have an ’illegal value’ for
ANS_TYPE =2 *
IF ANS_TYPE=2

THEN

IF DD is not in range [1,31]
for FRA DD is set to 1 and MM to 1
for TIL DD is set to 31 and MM to 12
ERROR_DATES = 12

IF MM is not in range [1,12]
for FRA MM is set to 1
for TIL MM is set to 12
ERROR_DATES = 12

IF FRA > TIL
FRA and TIL are interchanged
ERROR_DATES = 13

The table[/|describes how the dates are changes.

16 Contents

Table 7 Code values for ERROR_DATES

Value Label

1,2 HELARKOD=1, either ANSFRA or ANSTIL has a valid date. ANS_TYPE
is set to 2. Missing values for NUM_ANSFRA are set to 0101 and ER-
ROR_DATES = 1, a missing value for NUM_ANSTIL is set to 1231 and
ERROR_DATES = 2.

3,4 HELARKOD=0, either ANSFRA or ANSTIL has a missing value. Missing
value for NUM_ANSFRA is set to 0101, NUM_ANSTIL is set to 1231, and
ERROR_DATES is set to 4.

5 IF HELARKOD=0 and ANS_TYPE = 2 but ANSFRA = 0101 and ANSTIL
= 1231 then ANS_TYPE is set to 1

6 ANS_TYPE =1, ANSFRA and ANSTIL are unedited and have date values
different from 0101, 1231. ANS_TYPE is set to 2.

7 HELARKOD=0, ANS_TYPE = 2, ANSFRA and ANSTIL are not updated,
but one has a missing value. If ANSFRA is missing it is set to 0101, and if
ANSTIL is missing it is set to 1231.

8 If 1 < NUM_ANSFRAMM < 31 and 1 < NUM_ANSFRADD < 1 then
DD and MM are switched. The same for NUM_ANSTIL.

9 The first year in data is 01-01-1988. So if MM > 80 we assume it
is the year. If NUM_ANSFRAMM > 80 and 1 <NUM_ANSFRADD
< 12 then NUM_ANSFRAMM is set to NUM_ANSFRADD, and
NUM_ANSFRADD is set to 1. The same for ANSTIL. If DD 12 then
NUM_FRA is set to 0101 and NUM_TIL is set to 1231

10 If 12 < MM < 80 NUM_ANSFRA is set to 0101. The same for
NUM_ANSTIL which is set to 1231.

11 If NUM_ANSFRADD > 31, then NUM_ANSFRAMM is set to
1, and NUM_ANSFRADD = 1. If NUM_ANSTILDD > 1, then
NUM_ANSTILDD is set to 31, and NUM_ANSTILMM = 1.

12 NUM.ANS has an illegal value: NUM_ANSFRADD is set to 1
NUM_ANSFRAMM is set to 1 NUM_ANSTILDD is set to 31
NUM_ANSTILMM is set to 12 The same for NUM_ANSTIL.

13 If NUM_ANSFRA < NUM_ANSTIL they are switched.

Table[8| shows the distribution of error dates.

After correction of obvious errors approximately 90 percent of the observations
have no error.

All other error types other than 5 do not occure after 1989.

Error types 5,7,13 are not serious errors; 8-10 percent of the observations have
these errors. These changes are well justified.

The error types 3,4,6,7,8,9,10,11,12,13 are not well justified changes. Observa-
tions with these changes are less than 2 percent.

Contents 17

For error types 1,2,3,4,7,10,11 one of the dates has a valid value, the other value
is missing. The missing value is set to one of the arbitrary dates 01-01 , 31-12. For
error types 3,4 these changes have no effect if the specified date is 01-01 or 31-12.

There are no observations with error type 6.

Observations with ANS_TYPE equal to 3 have no date values; they are set to the
arbitrary dates 01-01 and 31-12. In the first years 12-14 percent of the observations
have this ANS_TYPE; in the lates years the percent is 5-8.

In total about 85 % of the observations have correct start and end dates.

18 Contents

Table 8 errorcodes

YEAR DATE ERROR CODES

Frequency 0 1 2 3 4 6 7 8 9 10 11 12 13 TOTAL

Row Pct

1984 3694145 1161 103 89 45 314886 170 179 13 34 44 8 2651 4013528
92.04 0.03 0.00 0.00 0.00 7.85 0.00 0.00 0.00 0.00 0.00 0.00 0.07

1985 3869525 126 44 43 76 327955 411 1727 9 25 166 4 7144 4207255
91.97 0.00 0.00 0.00 0.00 7.79 0.01 0.04 0.00 0.00 0.00 0.00 0.17

1986 4023597 110 0 34 81 352697 198 1968 14 149 17080 0 8452 4404380
91.35 0.00 0.00 0.00 0.00 8.01 0.00 0.04 0.00 0.00 0.39 0.00 0.19

1987 3977546 3 13 18 196 357164 184 93 16 10 14509 1 7398 4357151
91.29 0.00 0.00 0.00 0.00 8.20 0.00 0.00 0.00 0.00 0.33 0.00 0.17

1988 3928456 0 0 344 125 357839 391 155 17 8 588 2 9285 4297210
91.42 0.00 0.00 0.01 0.00 8.33 0.01 0.00 0.00 0.00 0.01 0.00 0.22

1989 3809333 0 7 433 299 400075 9 766 14 6 446 1 8692 4220081
90.27 0.00 0.00 0.01 0.01 9.48 0.00 0.02 0.00 0.00 0.01 0.00 0.21

1990 3765725 0 0 0 0 399165 0 0 0 0 0 0 717 4165607
90.40 0.00 0.00 0.00 0.00 9.58 0.00 0.00 0.00 0.00 0.00 0.00 0.02

1991 3686119 0 0 0 0 405427 0 0 0 0 0 0 7 4091553
90.09 0.00 0.00 0.00 0.00 991 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1992 3515221 0 0 0 0 511091 0 0 0 0 0 0 0 4026312
87.31 0.00 0.00 0.00 0.00 12.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1993 3468692 0 0 0 0 510526 0 0 0 0 0 0 0 3979218
87.17 0.00 0.00 0.00 0.00 12.83 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1994 3629902 0 0 0 0 512178 0 0 0 0 0 0 0 4142080
87.63 0.00 0.00 0.00 0.00 12.37 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1995 3686343 0 0 0 0 511874 0 0 0 0 0 0 0 4198217
87.81 0.00 0.00 0.00 0.00 12.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1996 3658224 0 0 0 0 525084 0 0 0 0 0 0 0 4183308
87.45 0.00 0.00 0.00 0.00 12.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1997 3669556 0 0 0 0 540547 0 0 0 0 0 0 0 4210103
87.16 0.00 0.00 0.00 0.00 12.84 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1998 3782429 0 0 0 0 532278 0 0 0 0 0 0 0 4314707
87.66 0.00 0.00 0.00 0.00 12.34 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1999 3822383 0 0 0 0 537194 0 0 0 0 0 0 0 4359577
87.68 0.00 0.00 0.00 0.00 12.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2000 3900143 0 0 0 0 515056 0 0 0 0 0 0 0 4415199
88.33 0.00 0.00 0.00 0.00 11.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2001 3909186 0 0 0 0 520861 0 0 0 0 0 0 0 4430047
88.24 0.00 0.00 0.00 0.00 11.76 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2002 3804816 0 0 0 0 556369 0 0 0 0 0 0 0 4361185
87.24 0.00 0.00 0.00 0.00 12.76 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2003 3764331 0 0 464 240 549659 0 0 0 0 0 0 1092 4315786
87.22 0.00 0.00 0.01 0.01 12.74 0.00 0.00 0.00 0.00 0.00 0.00 0.03

2004 3680076 0 0 1442 234 582551 0 0 0 0 0 0 993 4265296
86.28 0.00 0.00 0.03 0.01 13.66 0.00 0.00 0.00 0.00 0.00 0.00 0.02

2005 3782794 0 0 80 1064 612029 0 1242 0 0 0 0 681 4397890
86.01 0.00 0.00 0.00 0.02 13.92 0.00 0.03 0.00 0.00 0.00 0.00 0.02

2006 3979721 0 0 0 0 628931 0 22 0 0 0 0 0 4608674
86.35 0.00 0.00 0.00 0.00 13.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2007 4111747 0 0 0 0 504357 0 33 0 0 0 0 0 4616137
89.07 0.00 0.00 0.00 0.00 10.93 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Total

90,920,0.10 1,400 167 2,947 2,360 11,565,7.93

83 232 32,833

16 47,i12 102,580,501

Contents

The table[9]shows the distribution of jobs on spell length. About 50 % of the jobs
are a full year employment, about 40% of the jobs are one part year spell, and the
remaining 10 % are 2 or more spells within the year. The start and end date of these

jobs are unknown.

Table 9 anstype

YEAR ANS_TYPE CODES

Frequency one full year one part year 2 or more total

Row Pct spell spell spells

1984 1985679 1470988 556861 4013528
49.47 36.65 13.87

1985 1992686 1609790 604779 4207255
47.36 38.26 14.37

1986 2047434 1739244 617702 4404380
46.49 39.49 14.02

1987 2101041 1697301 558809 4357151
48.22 38.95 12.83

1988 2121325 1657034 518851 4297210
49.37 38.56 12.07

1989 2128976 1526738 564367 4220081
50.45 36.18 13.37

1990 2143629 1541579 480399 4165607
51.46 37.01 11.53

1991 2138469 1464786 488298 4091553
52.27 35.80 11.93

1992 2084858 1453456 487998 4026312
51.78 36.10 12.12

1993 2044124 1479604 455490 3979218
51.37 37.18 11.45

1994 2098087 1624939 419054 4142080
50.65 39.23 10.12

1995 2125312 1677378 395527 4198217
50.62 39.95 9.42

1996 2177970 1603154 402184 4183308
52.06 38.32 9.61

1997 2212354 1625656 372093 4210103
52.55 38.61 8.84

1998 2297033 1689328 328346 4314707
53.24 39.15 7.61

1999 2363380 1671992 324205 4359577
54.21 38.35 7.44

2000 2392021 1689776 333402 4415199
54.18 38.27 7.55

2001 2390779 1724362 314906 4430047
53.97 38.92 7.11

2002 2449189 1633994 278002 4361185
56.16 37.47 6.37

2003 2447731 1577600 290455 4315786
56.72 36.55 6.73

2004 2472223 1584803 208270 4265296
57.96 37.16 4.88

2005 2388404 1794317 215169 4397890
54.31 40.80 4.89

2006 2437276 1877687 293711 4608674
52.88 40.74 6.37

2007 2435420 1999645 181072 4616137
52.76 43.32 3.92

Total 53475400 39415151 9689950 102580501

20

Contents

The table[I0]shows that more than 99% of the observations have a positive wage,
for the years 1984-1989 0.04% of the observations have a negative value, for all
years 0.2 % of the observations have a zero value.

Table 10 jobloen

YEAR WAGE VALUE CODES

Frequency zero negative positive total

Row Pct wages wages wages

1984 8909 1592 4003027 4013528
0.22 0.04 99.74

1985 10582 1632 4195041 4207255
0.25 0.04 99.71

1986 20182 2226 4381972 4404380
0.46 0.05 99.49

1987 0843 2105 4345203 4357151
0.23 0.05 99.73

1988 8344 1685 4287181 4297210
0.19 0.04 99.77

1989 7416 1866 4210799 4220081
0.18 0.04 99.78

1990 4268 0 4161339 4165607
0.10 0.00 99.90

1991 5240 0 4086313 4091553
0.13 0.00 99.87

1992 4289 0 4022023 4026312
0.11 0.00 99.89

1993 4124 0 3975094 3979218
0.10 0.00 99.90

1994 17005 0 4125075 4142080
0.41 0.00 99.59

1995 12140 0 4186077 4198217
0.29 0.00 99.71

1996 4960 0 4178348 4183308
0.12 0.00 99.88

1997 6667 0 4203436 4210103
0.16 0.00 99.84

1998 9155 0 4305552 4314707
0.21 0.00 99.79

1999 9448 0 4350129 4359577
0.22 0.00 99.78

2000 8604 88 4406507 4415199
0.19 0.00 99.80

2001 10617 0 4419430 4430047
0.24 0.00 99.76

2002 12932 0 4348253 4361185
0.30 0.00 99.70

2003 11577 3 4304206 4315786
0.27 0.00 99.73

2004 12390 0 4252906 4265296
0.29 0.00 99.71

2005 10416 0 4387474 4397890
0.24 0.00 99.76

2006 94078 3 4514593 4608674
2.04 0.00 97.96

2007 13736 0 4602401 4616137
0.30 0.00 99.70

Total 316922 11200 102252379 102580501

Contents 21

2.1.3 02 joining ESR_CVRNR before 2008_2021. v.1.

If ESR_SE_CVR has been updated the jobs in subdirectory spell\firm_id\programs\before2008.
The new CONESR has SENR for the entire period. For the period 2000-2007 this

SENR is used to match with SPELL_FIRM_ID and add CVRNR. From 2008 SENR

and CVRNR are selected from BFL.

2.2 02 correction dates using MIAPNRM 2021 v1

. Corrections are made for 1998 - 2008. A MIAPNRM observation is identified by (
AAR, MONTH, PNR, SENR, DSKOD.)

STEP 1. A temporary dataset miapnrnr is created where the MIA variable ANGPER
is imputed in AAR and MONTH.

Then the temporary dataset temp.miapnrm is created using miapnrm_t. The pro-
gramme will make a match between raw_employ_cons_ras and temp.miapnrm_t if
the MIA observation exists in month t-1, t, t+1.

A temporary dataset femp.miaprnm is created using dataset mia.prnm_t. This
dataset contains the original MIA observations for time t, and a copy of the ob-
servations for t-1 and t+1, where AAR and MONTH are set to t-1 and +1.

The original observations have ORG = 1, the added observations have ORG = 0.

STEP 2. A temporary dataset cons_monthly_obs_2 is created using rawbf08.raw_employment_consesr_aar.
Fr the period 1998-2007 the yearly observataions are converted to monthly obser-

vations. It contains the variables START_DATO, SLUT_DATO, MONTH_START,

PNR, SENR, DSKOD.

STEP 3. The MIA data, temp.miapnrnr, and the monthly RAWEMPLOY data are
merged.

For ANS_TYPE = 1,2 we can use the ORG = 0,1 observations for the match.

For ANS_TYPE = 3 it is only possible to use ORG = 1.

It creates the dataset employ_consesr_monthly.

For years 1998-2007 we have additional employment information from dataset
MIAPNRM. The dataset contains information on a monthly level about whether an
individual was working or not and at which firm the employment took place. We
use this information to verify the start and end date collected from raw employment
records, i.e. from CONS/RAS.

April 2007 is a month with many erroneous records in MIAPNRM. The stock
of individuals drop from approximately 2.8 million to 1.8 million. We correct this
erroneous records by “adding’ a fictitious record for April 2007 if the individual is
present in March 2007 and May 2007.

We define a boolean variable bool_potential_mia_validation’ for each of the now
monthly raw employment records which is equal to 1 if a given raw employment

22 Contents

record (pnr, establishment, firm, year, month) matches MIAPNRM on (pnr, firm,
year) and O otherwise.

Looking at the subset where the boolean is equal to one we look for a match on
(pnr, firm, year, month), i.e. we look for a month-specific match between the two
datasets. If there is a monthly match, we say the monthly raw employment record is
confirmed otherwise we say it is not confirmed.

For raw employment records of ’ans_type’ 2 we allow the first and last month to
be confirmed by either a match on month or a match on the next/previous month.
We now keep records for which either, year ; 1998, "bool_potential_mia_validation’
= 0, ’bool_potential_mia_validation’ = 1 and record is confirmed, or 2008 _ year.
Note that by keeping monthly records for which ’bool_potential_mia_validation’ =
0, the stock of individuals in a given year should not change as a result of using
MIAPNRM information.

Further, the records for years 2008-2013 do not need to split into monthly records
as they are already monthly due to the structure of BFL. We now split salary and
estimated hours worked onto the monthly employment records for years prior to
2008. We split the two measures by the amount of days worked in a given month
compared to total days worked for the yearly raw employment record. The resulting
dataset of this programme is

_11_monthly_mia_confirm_obs. The PDF of the programme shows that ’bool_potential_mia_validation’
= 1 for around 95% of raw employment records for years 1998-2007.

For these records around 80% of the monthly raw employment records are con-
firmed.

2.2.1 03 -estimating timetal ATP before 2008_2021.v1

The purpose of this programme is to estimate number of hours worked using the
Lund-Vejlin algorithm

The resulting dataset of this programme is 05_raw_employment _spells

programme name:

Purpose:

The purpose of this SAS- programme is to estimate average salary per hour
worked for jobs done from 1980 - 2007. We know the total salary earned per job
but to estimate average salary per hour worked we need to estimate how many hours
the person in question have worked. We use information about paid ATP to estimate
hours worked. The levels of full ATP payments varies and they are as follows;

e 1980 - 1981: Only one level of ATP which is 432 kr.

* 1982 - 1987: Still only one level of ATP which is 1166 kr.

e 1988 - 1989: Two levels of ATP, high-level is 1749 kr. and low-level is 1166 kr.

e 1990 - 1995: Still two levels of ATP, high-level is 2332 kr and low-level is still
1166 kr.

! see Documenting and improving the Hourly Wage Measure in the Danish IDA database, Na-
tionalgkonomisk Tidsskrift, Issue 1 No 1, Vol. 2016

Contents 23

e 1996 - 2013: Now three levels of ATP, ’sats A’ is 2682 kr., ’sats B’ is 1166 kr.
and ’sats C’ is 1516 kr.

The ATP amount paid varies due to amount of hours worked per week. For the
period 1980 - 1992 the rules were as follows;

* 0-9 hours worked: No ATP amount paid.

¢ 10 - 19 hours worked: 1/3 of full ATP amount.
e 20 - 29 hours worked: 2/3 of full ATP amount.
¢ 30 hours worked or more: Full ATP amount.

For the period 1993 and onwards the rules are as follows;

* 0 - 8 hours worked: No ATP amount paid.

e 9-17 hours worked: 1/3 of full ATP amount.
¢ 18 - 26 hours worked: 2/3 of full ATP amount.
e 27 hours worked or more: Full ATP amount.

We calculate variable *ATP.broek’ as the relation between ATP payments and ATP
level:
AT P.payments

AT P.sats
We now estimate minimum and maximum hours worked that will result in the ob-
served *ATP.broek’. We first look at ATP.broek = 0. We do (example where year is
1993);

AT P.broek =

1
AT P.broek =< 3
AT P.broek
minimum.hours.worked = | 52weeks x ——— | *9.hours
3
AT P.broek
maximum.hours.worked = | 52weeks x ——— | x 17.hours
3
We now look at
2
AT P.broek =< 3
AT P.broek
minimum.hours.worked = | 52weeks x ——— | * 18.hours

3

24 Contents

AT P.broek
maximum.hours.worked = | 52weeks x ———— | *26.hours

3

Finally, we look at
AT P.broek =<1

minimum.hours.worked = (52weeks « AT P.broek) 27 .hours

maximum.hours.worked = (52weeks x AT P.broek) 37.hours

2.2.2 04 joining idas_lbnr before 2008_2021. v.1

The purpose of this programme is to merge the establishment identifier from IDAS
(LBNR) onto the resulting dataset of programme 02 in order to define spell estab-
lishment identifier. We use dataset IDAS to merge LBNR onto the raw employment
records. IDAS contains information on non-fictive establishments and this dataset is
available for the entire spell period, but the /DAS dataset is available much later than
BFL. We merge on (ARBGNR, ARBSTK, YEAR).

The resulting dataset of this programme is _03_raw_employment _spells.

The PDF file of the programme analyzing this dataset shows that we are able to
map LBNR from IDAS for 90% - 95% for 1985-2006 and for 2008-2013. For year
2007 the level of matches drops quite substantially. || The resulting dataset of this
programme is _06_raw_employment_spells. This is the result of the process to create
the raw_employment_spells_dataset

2.2.3 05 joining fida_cvr before 2008_2021. v1

This programme has to be updated when FSE delivers a correct FIDA dataset.

The purpose of this programme is to merge the firm identifier (CVRNR) used in
FIRM onto the resulting dataset of programme 01 in order to use this variable as
our SPELL_FIRM_ID whenever possible. Usage of this firm identifier enables us to
merge employment spells directly with the datasets of the firm side FIRE, f.ex.

We merge the resulting dataset of programme fida_analysis_v1 named fida_3 onto
the resulting dataset of the previous programme 01. Dataset fida_3 contains the year-
specific mapping between the establishment identifiers of CONS/RAS/ and the firm
identifier of FIRM constructed using FIDA. Analysis of FIDA has shown that the
mapping is independent of PNR. i.e. the mapping is n-1 (if the mapping depended

2 Note that we do not expect a 100% match since IDAS only contains information on non-fictive
establishments. For raw employment records with no match, we set LBNR equal to 0000000000’
consistent with DST’s coding of fictive establishments.

Contents 25

on PNR then we would expect the mapping to be n-m), E] Only 5% ans_type = 3
when looking at non-erroneous raw employment records. The low fraction of no-
error is likely due to the fact that all blank raw employment records are assigned to
ANS_TYPE = 3.

Given that the mapping is independent of PNR we merge on the condition that
year and establishment identifiers match between the two datasets. This is impor-
tant as it enables us to use the firm identifier of FIRM for individuals who are not
present in FIDA. The first year of FIDA is 1995, however we are only able to use
FIDA for years 2003-2007 since the establishment identifiers of FIDA differ from
the establishment identifiers of CONS for years prior to 2003.

The resulting dataset of this programme is _02_raw_employment _spells.

The PDF of the programme shows that we are able to match 90% - 97% of raw
employment records with FIDA.

2.2.4 old-04-joining_mapped_cvrnr_before_2008_2021_v4

The purpose of this programme is to merge firm identifier "'mapped_cvrnr’ onto the
resulting dataset of the previous programme in order to define spell firm identifier
for records for which we are not able to merge information on the firm identifier
from in FIRM, i.e. records where no merge was possible in programme 02.

The merging of the firm identifier *'mapped_cvrnr’ is conducted using dataset
_cvr_se2014_5 constructed in programme se_cvrnr_92 (located in folder arbsted).
The firm identifier *'mapped_cvrnr’ is a variable provided by DST that maps a given
’senr’ into a “cvrnr’. There exist few records in the mapping dataset for which a
given value of ’senr’ maps to some ’cvrnr’ and then in later years map to another
“cvrnr’. In this case, we use the most recent mapping in all years. We now have
all the needed firm identifiers merged onto our raw employment records needed in
order to define the spell firm identifier called ’spell_firm_id’.

From 2008 CVRNR of BFL is used as spell firm identifier.

The resulting dataset of this programme is -04_raw_employment_spells.

The PDF of the programme shows the level and percentage of raw employment
records for which we are able to match a mapped_cvrnr. The level of matches in-
crease by year as we get closer and closer to the launch of firm identifier *cvrnr’.

2.3 FROM 2008

The BFL is used as input to the jobs. The following jobs are used to create the
employment spells.

3 http://www.dst.dk/da/Statistik/dokumentation/Times/moduldata-for-arbejdsmarked/atpblb.

26 Contents

2.3.1 00_driver from 2008_2021_v1

The driver runs the programmes needed for generating the dataset raw_employment.
The driver job can be edited using the following % let values:

e INOBS, controls how many records are read: max or an integer number.

* BOOL_DELETE, deletes temporary files after each step.

* BOOL_PDF_ON, controls generation of PDF files for description and debug.

¢ lib_in_SPELL, SAS library for in data.

e LIB_OUT, library for storing permanent output data. Test and temporary data are
stored in
temp. The files must be deleted manually when they are not needed anymore,

* START_YEAR and END_YEAR determine the period for whih the spells are
generated

2.3.2 01 extracting bfl from 2008_2021. v1

The relevant variables are extracted from BFL. They contain a few more variables
than raweb08 raw_employment_conesr_ras.

If the value of JOB_LOEN_BELOEB_SMAL is missing then it is set to 0. If the
variable JOB_LOEN_BELOEB_SMAL is 0 the BOOL_LONBLB is set to 1, else to
0.

A BOOL variable is set for missing values for JOB_ATP_BELOEB and JOB_ATP_BIDRAG_SATS_KODE.
All ATP contributions are converted to SATSB and assigned to variable JOB_ATP_BIDRAG _SATS_KODE
using JOB_ATP_BELOEB.

The files raweb08 raw_employment_conesr_ras and rawefO8 raw_employment_bls
are merged to rawempl raw_employment. The resulting dataset is checked fr dupli-
caes using key (aar, pnr). Duplicate records are written to temp_employment in DDP.

* Number of missing values for SENR

e Number of missing vales for JOB_ATP_BIDRAG _SATS_KODE
* Number of missing values for JOB_ATP_BELOEB

» Showing frequencies for ANS_TYPE

* Histogram of AGE

2.3.3 02 joining ESR_CVRNR from 2008_2021. vl

2.3.4 04_joining_idas_lbnr_arbnr_from_2008_2021_v1

The purpose of this programme is to merge the firm identifier (CVRNR) used in
FIRM onto the resulting dataset of programme 01 in order to use this variable as

our SPELL_FIRM_ID whenever possible. Usage of this firm identifier enables us to
merge employment spells directly with the datasets of the firm side FIRE, f.ex.

Contents 27

2.3.5 03_joining_ IDAS_LBNR from_2008_2021_v1

The purpose of this programme is to merge the establishment identifier from /DAS
(LBNR) onto the resulting dataset of programme 02 in order to define spell estab-
lishment identifier. We use dataset IDAS to merge LBNR onto the raw employment
records. IDAS contains information on non-fictive establishments and this dataset is
available for the entire spell period, but the IDAS dataset is available much later than
BFL. We merge on (CVRNR, ARBNR).

(ARBNR, YEAR) should uniquely identify an establishment but for a small
amount of IDAS records (ARBNR, YEAR) are not unique on (CVRNR, ARBNR,
YEAR). It has been checked that for a given match on (ARBNR, YEAR) we also
have match on (CVRNR, ARBNR, YEAR). The problem has not yet been solved
buy you could match on (CVRNR, ARBNR, YEAR).

The resulting dataset of this programme is _-03_raw_employment_spells.

The PDF file of the programme analyzing this dataset shows that we are able to
map LBNR from IDAS for 90% - 95% for 1985-2006 and for 2008-2013.

2.3.6 old-05-estimating_timetal ATP_from_2008_2021_v1

For now this programme is not used. Later on it may be used to be compared with
variables in BFL.

The purpose of this programme is to estimate number of hours worked using
the Lund-Vejlin algorithm[*| In order to have a consistent hours worked measure,
we estimate hours worked for all hours worked for years from 2008. An analysis
shows that the observed amount of hours worked measure in BFL is not without
problems. We keep both the estimated and the observed amount of hours worked.
We directly use the SAS code of Lund-Vejlin. The estimation of hours is computed
for each (pnr, arbnr, year). Raw employment records are monthly thus in order to
use the Lund-Vejlin algorithm we aggregate the monthly records to yearly records
for each establishment (pnr, arbnr, year). It is only a temporary aggregation, i.e. we
do not discard the monthly information for records in 2008 and later. After having
estimated yearly hours worked for (pnr, arbnr, year), we linearly assign total hours
to each monthly record. Note that in order for this SAS- programme to run it is
needed that SAS- programmes 0lmerge- Pooled, 02BasicQuantitiesChap4Pooled,
and 03CalcProbsPooled have all been run. These programmes are located in Raw
employ obs TIMELON.

The resulting dataset of this programme is _05_raw_employment _spells.

4 see Documenting and improving the Hourly Wage Measure in the Danish IDA database, Na-
tionalgkonomisk Tidsskrift, Issue 1 No 1, Vol. 2016

28 Contents

2.3.7 06-final_preparation_of_raw_employment_spells_after 2008_2021_v1

The purpose of this programme is to make final adjustments to the resulting dataset
of the previous programme. The following adjustments are made,

1. The spell establishment identifier is defined as ’lbnr’ obtained from IDAS in pro-
gramme 03. The variable is named SPELL_LBNR.

2. We conduct a minimum of sample selection. We discard records if the age of the
individual is below age 15, and/or if *wage’ is equal to zero, and/or if spell firm
identifier is missing.

3. We discard temporary variables used in computation throughout all the previous
programmes.

4. For all non-discarded raw employment records SPELL_RAW_EMPLOY _ID is
added. In the computation of employment spells using these raw employment
records a unique sequential identifier keeps track of which raw employment
records have been used for each final employment spell. In this way, it is pos-
sible to ’go back one level’ and e.g. see establishment level changes within an
employment spell.

The resulting dataset of this programme is _-06_raw_employment_spell. This is the
result of the process to create the raw_employment_spells_dataset

We keep a dataset containing a larger list of variables mainly for debug purposes.
This dataset is named _06_raw_employment_spells_alvar.

2.4 Checking raw_employment spells v5

The jobs are in drectory spell\programs \raw_employment textbackslash check.
This programme carries out checks on the constructed raw employment records
including a count of the employment stock and an analysis of estimated timelon
(hourly wage). We first check for missing values. We find that we do not have miss-
ing values in the raw employment records. Next, we compute the stock of workers
in raw employment records at every second Monday of all month all years. We also
compute the stock of workers on a yearly level.

The drop in the monthly stock of workers between December 2007 and January
2008 is not present when we look at the yearly stock of workers between 2007
and 2008, thus the drop in the stock of workers is mainly explained by the better
start and end dates in BFL. L.e. for raw employment records without information
on start and end date employment is set to have taken place between January first
and December 31. also some employees probably report full year employment even
when employment only took place for a sub period of the year. 11p. 1-14 of the
PDF. 12p. 19-31 of the PDF.

We conduct a series of distributional analysis of the hours worked and hourly
wage measures in the raw employment records. When conducting this analysis, we
aggregate 2008 and later records to (pnr, arbnr, year). Recall that this is the level we

Contents 29

estimate hours for in programme 05. We compare ’timelon’ in IDAN for type H em-
ployments with a measure denoted FATH (full algorithm type H) and with estimated
hourly wage in spells. The comparison between "timelon’ and FATH timelon shows
the difference between DST and Lund-Vejlin hourly wage measure, especially for
the early dates of the spell. The Lund-Vejlin hourly wage measure improves DST
"timelon’ thus a difference between these two measures is expected. For spells, we
are not able to use the full Lund- Vejlin algorithm since this algorithm uses IDA
information which is only available for type H employment. The hourly spell wage
measure is computed using a restricted version of FATH where the information only
available to type H employment is left out. We compare FATH and spell hourly
wage measure in order to quantify the loss in performance of using the restricted al-
gorithm. Pages 276-302 of the PDF show the distribution of the difference between
"timelon’ and FATH and the difference between FATH and hourly wage measure
of spells. We see that the difference between "timelon’ and FATH is larger than the
difference between FATH and hourly wage measure of spells for all years, thus the
difference between "timelon’ and hourly wage measure in spells is mainly driven by
the Lund-Vejlin improvements to the hourly wage measure.

2.4.1 old-04-joining_mapped_cvrnr_from_2008_2021_v4

The merging of the firm identifier *'mapped_cvrnr’ is conducted using dataset
_cvr_se2014_5 constructed in programme se_cvrnr_92 (located in folder arbsted).
The firm identifier *'mapped_cvrnr’ is a variable provided by DST that maps a given
’senr’ into a “cvrnr’. There exist few records in the mapping dataset for which a
given value of ’senr’ maps to some ’cvrnr’ and then in later years map to another
“cvrnr’. In this case, we use the most recent mapping in all years. We now have
all the needed firm identifiers merged onto our raw employment records needed in
order to define the spell firm identifier called ’spell_firm_id’.

From 2008 CVRNR of BFL is used as spell firm identifier. The spell_firm_id is
defined as the first non- missing value of the following variables (in decreasing
priority): the firm identifier from FIDA, *'mapped_cvrnr’, and ’senr’/’cvrnr’.

The resulting dataset of this programme is _04_raw_employment _spells.

The PDF of the programme shows the level and percentage of raw employment
records for which we are able to match a mapped_cvrnr. The level of matches in-
crease by year as we get closer and closer to the launch of firm identifier *cvrnr’.

Chapter 3
Firm Identifiers

3 Introduction

The firm and workplace identifiers to the spell data are created by a sequence of jobs
in directory firm_id.

The two major firm identifiers are SENR, A firm account number for tax and
custom payments and CVRNR, Encrypted legal unit identifier. Data break 1994.

SENR was introduced in 1985 as an identifier for fiscal payments from firms to
the customs and tax authorities.

CVRNR was introduced in 1999 as a unique identifier of legal units. Firms may
also choose to have several CVRNR and to change a CVRNR. Therefore, CVRNR is
not a unique identifier of an economic unit. OKNR is an idenfitier of an economic
unit created by ESR. One OKNR may be owner of one or more CVRNR. One CVRNR
is marked as carrying data about an economic unit.

A CVRNR may own one or more SENR. If the legal unit only has one SENR then
the CVRNR is equal to the SENR.

The DS-DRDS project ”Firm Warehouse” is making an OK_OT_ID, an over-time
identifier for the economic unit from 2000.

The spell project has constructed a similar over-time identifier using worker-
flows among IDAS workplaces. These identifiers can be constructed from 1980.
They are compared to OK_OT_ID.

Until 2018, several datasets did not include SENR before 1999, but only AR-
BGNR or JURNR.

JURNR is an ESR unique identifier of legal units and ARBGNR is an IDA unique
identifier of owners of workplaces. JURNR and ARBGNR are similar. For privately
owned legal units they are equal to SENR. For non-private units different identifiers
are used, see the description in ARBGNR. For privately owned legal units ARBGNR
is a SENR, for others it is similar to JURNR.

From 2018 all relevant FSE datasets contain SENR hence ARBGNR and JURNR
are no longer needed. Before 2018 ARBGNR was equal to ARBGNR9 i.e. ARBGNRS
with a one digit prefix identifying the system reporting taxable income. From 2018

31

32 Contents

ARBGNR is equal to ARBGNRS in FSE datasets, but all ECONAU datasets may
not yet have been updated. If the dataset has been updated ARBGNR is renamed to
SENR.

The SENR can be used to map CVRNR on these datasets. The mapping is done
using dataset ESR_SE_CVR. ESR_SE_CVR is also used to verify SENR and CVRNR
in all new data. All raw spell dataset use this mapped CVRNR.

3.1 Workplace identifier

Until 2008 a physical workplace is identified by (AAR, ARBGNR, ARB_STK) in
CONESR and RAS or (AAR, ARBGNR, DSKOD) in IDA. ARB_STK and DSKOD are
similaar but not identical. A fictitious workplace is identified by specific ARB_STK
code values.

From 2008 a workplace is identified by ARB_NR and ARB_SUBTYPE and an
indicator FIKTIV_ARB_KODE defines the workplace to be a physical (workplace)
or a fictitious workplace.

IDA has constructed an over-time physial workplace identifier LBNR. LBNR
is 00.00.00.00 for fictitious workplaces, hence they are not uniquely identified by
LBNR, but must be identified by ARBGNR. If a ARBGNR has only one workplace
then ARB_STK has a missing value, but (AAR, ARBGNR, ARB_STK) is still a unique
key. An establishment is a physical workplace.

IDAS only has physical workplaces but CONESR, BFL, IDAN, and RAS have
both physical and fictitious workplaces. CONESR and BFL only have jobs occupied
by employed workers.

All the workplace keys are collected in spell dataset SPELL_ARB.

We keep a dataset containing a larger list of variables mainly for debug purposes.
This dataset is named _06_raw_employment_spells_alvar.

4 Spell firm_id

Dataset SPELL_FIRM_ID The job _01_esr_firm_id_b08_2021_v1 creates the dataset
SPELL_FIRM_ID in libray firm_id. The dataset contains all firm and workplace iden-
tifers used in spell data. The job inputs ESR_SE_CVR and these observations are the
core of SENR and CVRNR. The SOURCE and SOURCE_CVR are set to 1, with
fomat label "ESR”.

Contents 33

4.1 Match a CVRNR on dataset RAW_EMPLOYMENT

The wage reporting unit in RAW_EMPLOYMENT_CONESR_RAS has key SENR.
The identifier CVRNR is mapped on using ESR_SE_CVR.

First it is atttempted to match on (AAR,vnJOBulSENR). If there is not a match it
is attempted to match on (JOB_SENR) only. If there is a match EDITS=91 and spell
dates are set to [1984-2007]. In both cases the observations are flagged, SOURCE=1
and SOURCE_CVR=1.

If there still is not a match it is attempted to match to ESR_.SE_CVR_EVENTS
using (JOB_SENR). These ESR observations do not have a CVRNR, therefore
JOB_CVRNRis assigned JOB_SENR. EDITS=92 and spell dates are set to [1984-
2007]. The observations are flagged, SOURCE=1 and SOURCE_CVR=2.

If there still is not a match these rerporting units in RAW_EMPLOYMENT_CONESR_RAS
are added toSPELL_FIRM_ID. These observations do not have a CVRNR, therefore
JOB_CVRNRIs assigned JOB_SENR. EDITS=93 and spell dates are set to [1984-
2007]. The observations are flagged, SOURCE=2 and SOURCE_CVR=2.

These tasks are done by the following jobs:

_02_match_esr_conesr_b08_2021_v1 For the period 1984-2007 CVRNR is matched
on RAW_EMPLOYMENT_-CONESR_RAS from ESR_SE_CVR using key (AAR, SENR.
)

The key is unique for ESR_SE_CVR.

In-data for the marge are:

e RAW_EMPLOYMENT_-CONESR_RAS has 102,580,501 obsevations.

e ESR SE_CVR has 9,865,379 observations. The resulting datasets are stored in
subdirectory extittemp.

e RAW_EMPLOYMENT_CONESR_RAS has 87,443,453 observations.

e RAW_EMP_IN_EMP_NOT_ESR has 14,137,048 observations without a match.

_01_match_esr_conesr_only_senr_b08_2021_vl The purpose of this job is to ex-
amine how to match on a CVRNR on the observations in RAW_EMP_IN_EMP _NOT_ESR.
The dataset SPELL_FIRM_ID is a yearly data set. If a new SENR has to be added
or the Rel spell dates are changes it is necessary first to create a spell_firm_id_events
dataset and then expand it to yearly observations to be added to SPELL_FIRM_ID.

If the observations have to be updated the old observations must first be deleted.

_02_match_esr_conesr_only_senr_b08_2021_v1l The missing match in previous jobs
can be caused by

* the SENR is in ESR_SE_CVR but the spell dates are wrong.

* the SENR exists in ESR_SE_CVR_EVENTS but CVRNR is missing.

» the key vaSENR does not exist in ESR, The unit from RAW_EMP_IN_EMP _NOT_ESR
is added to SPELL_FIRM_ID.

e ESR_SE_CVR_EVENTS contains JOB_SENR units with or without CVRNR.

34 Contents

STEP 1 Match RAW_EMP_IN_EMP_NOT_ESR and ESR_SE_CVR_EVENTS unsig
only JOB_SENR.

The key (SENR) in RAW_EMP_IN_EMP_NOT_ESR is made unique. The resulting
dataset has 241,424 observations.

The in datasets in the merged subdirectory temp are:

e RAW_EMP_IN_EMP_NOT_ESR has 241,424 obsevations.
e ESR_SE_CVR_EVENTS has 2,268,657 observations.

The out datasets are:

e RAW_EMP_IN_EMP_NOT_ESR has 122,076 observations with a match, some
with, some without a CVRNR.

e RAW_EMP_IN_EMP _NOT_ESR has 119,348 observations in RAW_EMP _IN_EMP _NOT_ESR 2
without a match.

two resulting dataset is 249,483 compared to 241,424 observations in indata.

The dataset RAW_EMP_IN_EMP_NOT_ESR_2 has to be added to the dataset
SPELL_FIRM_ID by job _02_change_rel_dates_conesr. As a first step it is added to
SPELL_FIRM_ID_EVENTS.

It is checked that RAW_EMP_IN_EMP_NOT_ESR_I has no duplicaes on key
(SENR.) The resulting dataset is RAW_EMP_IN_EMP_NOT_ESR_5. It has to be ap-
pended to SPELL_FIRM _ID by job _02_change_rel_dates_conesr_b08_2022_v1.

-1.02_change_rel_dates_conesr_b08_2021_vl The job updates SPELL_FIRM_ID
such that all observations in RAW_EMPLOYMENT_CONESR_RAS can be matched
on JOB_SENR.

First the dataset temp.SPELL_FIRM _ID_EVENTS is created. It consists of RAW_EMP_IN_EMP_NOT_ESR_2

with 119,348 obsevations and

e SOURCE =2

* SOURCE_CVR=2

e EDITS =92

* REL_START_AAR = 1984
* REL SLUT_AAR =2007

and of RAW_EMP_IN_EMP_NOT_ESR_5 with 238,696 obsevations and

e SOURCE=1

e SOURCE_CVR =1 if CVRNR is not missing, else JOB_CVRNR = JOB_SENR
and SOURCE_CVR =2

e EDITS =91

e REL _START_AAR = 1984

e REL_SLUT_AAR =2007

The two datasets are appended to temp.SPELL_FIRM _ID_EVENTS.

The dataset is merged with SPELL_FIRM_ID to delete all observjtions with key
(JOB_SENR) to be replaced.

No observations were deleted!

Contents 35

The temp.SPELL_FIRM _ID_EVENTS dataset is expanded to early data which is
appended to SPELL_FIRM_ID to form textitSPELL_FIRM_ID_1.

The job _02_match_after_esr_conesr_-b08_2022_v1 tests that all observations in
RAW_EMPLOYMENT can be matched with temp.SPELL_FIRM_ID_EVENTS.

temp.SPELL_FIRM_ID_EVENTS is renamed to SPELL_FIRM_ID. It has 27,797,658
observations.

The job freq_edits in subdirectory analysis \before_2008 produces some descrip-
tive pdf files.

4.2 OK units and workplace variables

The dataset ESR_OK contains the core variables of the economic units.
The dataset ESR_.OK_CVR contains a yearly dataset of relations between eco-
nomic units and legal units.

03_esr_ OK_CVR_b08_2021_v1 . This job matches OKNR and CVR_DATABAERENDE
on SPELL_FIRM_ID using key (AAR, JOB_CVRNR) for the period [2004,2007].
ESR_OK_CVR has 5 duplicates on key (AAR, JOB_CVRNR).

e SPELL_FIRM_ID has 2,620,169 observations

e ESR_OK_CVR has 2,340,989 observations

e 2,452,912 observations have a match

* 107,256 observations in dataset temp.IN_FIRM_NOT_ESR were in firm not in esr
¢ 19,900 observations in dataset test. NON_FIRM_IN_ESR were in esr but not in

firm

Chapter 4
Spell dataset SPELL_E

_00_driver_employment xxxx

_02_obs_before_2008_2021_vl The purpose of this SAS programme is to split
yearly raw employment records for the period 1985-2007 into monthly raw em-
ployment records.

Raw employment records for years prior to 2008 are reported at (pnr, establish-
ment, firm, year) level.

We now split each of the yearly records into monthly records such that all
records are reported as (pnr, establishment, firm, year, month). Within these prior to
2008 raw employment records we distinguish between 1985-1997 and 1998-2007
records.

12-Compress_overlaying_firm_id_obs_v4 The purpose of this programme is to
identify monthly raw employment records for a given individual on the same
“spell_firm_id’ in the same month which either overlap or have no day gap between
end date and start date. Once identified, these multiple raw employment records are
compressed into one with salary and amount of hours worked equal to the aggre-
gated salary and amount of hours worked for the two raw employment records.

Having compressed overlaying or directly connected raw employment records
on same ’spell_firm_id’, we create a new spell identifier named ’spell_id_12" for
all monthly raw employment records. The new spell identifier is unique on ’pnr’
and ’year’. We create a mapping file between ’spell_firm_12’ and the raw employ-
ment records identified by ’spell__employ_id’. We create a boolean variable called
"bool_overlap_or_zero’ indicating whether the monthly raw employment record
orig- inates from two or more compressed or directly connected raw employment
records. Using the map ping file, it is possible to know which establishment(s) a
given monthly raw employment record maps to.

The resulting datasets of this programme are named

_12_overlap_obs, _12_mapping_file The PDF of the programme shows that around
1% of the final monthly raw employment records of the programme originate from
compressed monthly records.

37

38 Contents

The maximum amount of monthly raw employment records compressed into one
is seventeen. Given that the final monthly employment record originates from com-
pressed monthly records, 95% of the compressed monthly records have different
values of ’lbnr’.

Finally, we count the number of initial monthly raw employment records going
into this programme and the number of monthly raw employment records resulting
of this programme.

14-Determine_overlay_status_v2 The purpose of this programme is to identify
months for a given individual for which he/she is employed at two or more dif-
ferent firms. This information is used when we create primary employment spells in
the following two SAS programmes.

The resulting dataset of this programme is named

_14 firm_id_pot_overlay_pnr.

15-Create_primary_secondary_employment_pot_overlay_v2 The purpose of this
programme is to identify each monthly raw employment record as either primary or
secondary employment. For a given combination of (pnr, month, ’spell_firm_id’),
we compute the amount of hours worked and salary earned at the given firm in the
current and two following months and name these aggregated hours worked and
salary earned *wide_lontimer’, *wide_lonblb’ respec- tively.

For each month, we define raw employment records at the ’spell_firm_id” with
the largest 'wide_lontimer’ as primary employment. If two or more values of
“spell_firm_id” have the same amount of *wide_lontimer’ then we use ’wide_lonblb’
to define primary raw employment records. We now look for raw employment
records not chosen to be primary employment in a given month for which ’spell_firm_id’
matches the primary employment value of ’spell_firm_id’ of the previous month. If
such raw employment records fit in a gap before the start date of the primary raw
employment record of the month then we mark these raw employment records as
primary employment. We mark raw employment records chosen to be primary em-
ployment in this second step by a boolean variable called *bool_beg_obs’.

An example is an individual working at ’spell_firm_id’ A from 1st of January
until 10th of March and at ’spell_firm_id’ B from 11th of March to 31st of August.
Raw employment records at ’spell _firm_id” A is primary employment in January and
February and raw employment records at ’spell_firm_id’ B is primary employment
in March-August. The raw employment record at ’spell_firm_id” A from 1st March
to 10th of March is not chosen to be primary employment in the first place, but
since it matches the previous month’ primary employment ’spell_firm_id’ and fits
before the start date of March’ primary ’spell_firm_id’ the raw employment record
is chosen to be primary employment.

If a primary raw employment record with "bool_beg_obs’ = 1 has end date greater
or equal to the start date of the primary raw employment record with ’spell_firm_id’
equal to the ’spell_firm_id’ with largest wide_lontimer’ then we do not alter the end
date and hence the two primary raw employment records will overlap. We leave it
to the researcher to choose whether to rely on either the end date information of

Contents 39

the ’bool_beg_obs’ = 1 record or the start date information in order to deal with
the overlap. All raw employment records not chosen to be primary employment
are defined as secondary employment. The resulting datasets of this programme are
named

_15_prim_spell_firm_id, _15_secondary_jobs_all. The variables in SPELL_E are
listed in Table 1]

Table 11 List of Variables - SPELL_E

Variable name Title

PNR PNR, Person identifier, encrypted CPRNR number
SPELL_FIRM_ID SPELL_FIRM_ID, SPELL, Firm ID
JOB_START_DATO JOB_START_DATO, In SPELLS, the first day of an employment. ANS_TYPE equal

to 1 or 2.

JOB_SLUT_DATO JOB_SLUT_DATO, In SPELLS, the last day of an employment. ANS_TYPE equal to
1or2.

DSKOD DSKOD, Establishment code

ARBGNR ARBGNR, IDA identifer for unit reporting wages for taxation, without sector prefix-

IDA identifier unit reporting wages for taxation, without sector prefix.

16-Compress_primary_and_secondary_jobs_v4 The purpose of this programme
is to compress the monthly raw employment records into employment spells. We
set salary and hours worked equal to the aggregated salary and hours worked across
the monthly raw employment records constituting each employment spell. First, we
compress raw employment records for individuals found in programme 14 not to
have any month with overlapping raw employment records into primary employ-
ment spells. These spells are of course defined as primary employment spells since
the individual does not have overlapping employment. Secondly, we compress the
primary raw employment records found in programme 15 into primary employment
spells. Last, we compress the secondary raw employment records into secondary
employment spells.

All employment spells are indexed by ’spell_id_16" and we create a mapping file
between ’spell_id_16’ and ’spell_id_12’, thus it is possible to disentangle a given
employment spell into the monthly raw employment records constituting the given
spell. Further, using the mapping file of programme 12, it is possible to map this
“spell_id_12’ into the raw employment records to get information about e.g. estab-
lishment. We create subspells containing yearly and/or monthly salary and hours
worked for each primary employment spell. For years prior to 2008, we report
yearly salary and yearly estimated hours worked. For years 2008-2013, we report
monthly salary and monthly observed hours worked. The resulting datasets of this
programme are named

* spells_prim_employ (_16_prim_jobs_compress)

* mapping_file_prim (_16_mapping_file_prim)

» subspells_sec_employ (_16_secondary_jobs_compress)
* mapping_file_sec (_16_mapping_file_sec)

40 Contents

* subspells_lon (_16_subspell_lon).

The dataset spells_prim_employ contains variables

e ’pnr’, person identifier.

e ’lonblb’, salary earned.

» ’startdato’, start date of employment spell.

* ’slutdato’, end date of employment spell.

* ’lontimer_estimated’, hours worked estimated in programme 05.

* ’lontimer_mix’ equal to lontimer_estimated for years prior to 2008 plus lon-
timer_bfl for years 2008-2013.

» ’pers_foed_dag’, date of birth from dataset PERSONER.

e ’spell_firm_id’, spell firm identifier defined in programme 04.

* bool_multiple_lbnr, indicating whether the employment spell consists of employ-
ment at two or more different ’spell_Ibnr’.

e bool_overlap_or_zero, indicating whether the employment spell consists of raw
employ- ment records collapsed in programme 12.

* bool_beg_obs, boolean defined in programme 15.

» ’spell_id_16’, identifier of an employment spell, unique by pnr.

22-Checking_constructed_employment _spells_v4 The purpose of this SAS pro-
gramme is to check the constructed employment spells. P. 2 of the PDF shows the
monthly count of workers in the primary employment spell data.

P. 3 shows the monthly count of firms (spell_firm_id).

P. 4 shows a primitive count of job-to-job transitions defined as an E-N-E transi-
tion from one firm to another with a maximum of 40 days between the two employ-
ment spells. The spike in 2007 is believe to be due to the big municipality reform of
2007. Further, note there is a spike in 2003, this is believed to be due to the fact that
we from 2003 use "cvrnr’ of FIDA as spell firm_id.11

P.5 shows a primitive count of recalls, where a recall is defined as E-N-E again
with a maxi- mum of 40 days between the two employment spells involving separa-
tion and hiring from/to the same spell_firm_id.

P.6 shows a count of recalls where we condition on the recall happening within
the same year, i.e. the end date and start date need share the same year. This is
primarily a check conducted to see whether such recalls occur before 1998.

P. 34-35 shows average and median daily salary within each year of the primary
employment spells. This is a check of the salary variable. The salary contain small
data breaks, however note that the median salary does not seem to have any signifi-
cant break.

Name of dataset: all_prim_employment_spell

General information

The dataset consists of all primary employment spells for the spelldata popula-
tion. We have not limited the spelldata population at the moment, but we will later
limit it by only considering persons in dataset "Personer’ aged between 15 and 75.

Variables in dataset

* Personnummer, person id variable.

Contents 41

e Firm id, firm id variable. We use ’senr’ from 1985-2004 and 2006-2007 and we
use “cvrnr’ for period 2005 and 2008-2011 which is due to the fact that these
variables are the ones that DST uses in Cons, Ras and BFL for the given periods.
We will later make an time consistent firm identification variable probably using
information from KOB. We observe a substantial amount of job changes in 2005
and 2008 which we think is due to the change in firm id variable. We expect the
time-consistent firm id variable to solve this issue.

 Start date for spell, contains start date for spell.

* End date for spell, contains end date for spell.

* Dskod, contains ’dskod’ for the subperiod of 1985-2007 which the spell covers.
We observe persons which on same firm id in a continuous period have multiple
values of ’dskod’. In this case we choose the value of ’dskod’ which corresponds
to the period of the spell in which the person worked the largest amount of hours
(or the where the largest salary was obtained if two different values of *dskod’
have the same amount of hours worked). See variable ’bool indicating multiple
dskod subspell’ and dataset "all_mult_dskod_subspell’.

* Arbgnr8, contains "arbgnr8’ for the subperiod of 1985-2007 which the spell cov-
ers. We do not make any subspells for persons having more than one value of
"arbgnr’ for the same spell as we do for multiple values of ’dskod’, this is due
to the fact that there is no logic explanation for this phenomenon. We will look
at these records later. The number of records having this abnormality is less than
1%.

» bfl_dskod, contains ’ajo_prod_nr_fra_prod_job’ for the subperiod 2008-2011 which
the spell covers. ’ajo_prod_nr_fra_prod_job’ is believed to be the equivalent of
"dskod’ in DST dataset BFL (e-indkomst). As for ’dskod’ we do observe per-
sons which on same firm id in a continuous period have multiple values of
"ajo_prod_nr_fra_prod_job’. In this case we choose the value of "ajo_prod_nr_fra_prod_job’
which corresponds to

Documentation Spell dataset - all_prim_employment_spell the period of the spell
in which the person worked the largest amount of hours (or the where the largest
salary was obtained if two different values of ’dskod’ have the same amount of
hours worked). See variable ’bool indicating multiple dskod subspell’ and dataset
“all_mult_dskod_subspell’.

* bfl_arbgnr8 contains "ajo_se_nr_fra_prod_job’ for the subperiod 2008-2011 which
the spell covers. ’ajo_se_nr_fra_prod_job’ is believed to be the equivalent of ’ar-
bgnr8’ in DST dataset BFL. As for "arbgnt’ we do not make any subspells for
persons having more than one value of *ajo_se_nr_fra_prod_job’ for the same spell
as we do for multiple values of ’bfl_dskod’, this is due to the fact that there is no
logic explanation for this phenomenon. We will look at this records later. The
number of records having this abnormality is less than 1%.

¢ Total hours worked, contains total number of hours worked for the whole dura-
tion of the spell. We have estimated number of hours worked using ATP-data for
the period 1985-2007. We have directly used the variable containing number of
hours worked for the period 2008- 2011 which we get from dataset BFL.We keep

42 Contents

yearly number of hours worked for every year in-between the start date and end
date of the spell in subspell dataset "all_lon_subspell’.

e Total salary, contains total salary for the whole duration of the spell. We keep
yearly salary for every year in-between the start date and end date of the spell in
subspell dataset *all_lon_subspell’.

* bool indicating secondary employment subspell, boolean variable which indi-
cates whether or not there exists a secondary employment spell mapping to the
primary employment spell. Please see dataset *all_sec_employ_subspell’ for more
information about this *'mapping’.

* bool indicating multiple dskod subspell, as argued the primary employment spell
might have multiple values of "dskod’ and/or multiple values of *bfl_dskod’. We
save the monthly records for any such spell in dataset ’all_mult_dskod_subspell’.
"bool indicating multiple dskod subspell” is a boolean variable which indicate
whether or not there exists such a multiple dskod subspell.

» Person spell id, is an identification key mapping from the primary employment
spell to matching subspell records. Combinations of pnr and person spell id are
unique.

General information

The dataset consists of all primary employment spells for the spelldata popula-
tion. We have not limited the spelldata population at the moment, but we will later
limit it by only considering persons in dataset "Personer’ aged between 15 and 75.

Variables in dataset

* Personnummer, person id variable.

e Firm id, firm id variable. We use ’senr’ from 1985-2004 and 2006-2007 and we
use “cvrnr’ for period 2005 and 2008-2011 which is due to the fact that these
variables are the ones that DST uses in Cons, Ras and BFL for the given periods.
We will later make an time consistent firm identification variable probably using
information from KOB. We observe a substantial amount of job changes in 2005
and 2008 which we think is due to the change in firm id variable. We expect the
time-consistent firm id variable to solve this issue.

» Start date for spell, contains start date for spell.

* End date for spell, contains end date for spell.

* Dskod, contains ’dskod’ for the subperiod of 1985-2007 which the spell covers.
We observe persons which on same firm id in a continuous period have multiple
values of ’dskod’. In this case we choose the value of ’dskod’ which corresponds
to the period of the spell in which the person worked the largest amount of hours
(or the where the largest salary was obtained if two different values of ’dskod’
have the same amount of hours worked). See variable bool indicating multiple
dskod subspell’ and dataset ’all_mult_dskod_subspell’.

* Arbgnr8, contains "arbgnr8’ for the subperiod of 1985-2007 which the spell cov-
ers. We do not make any subspells for persons having more than one value of
“arbgnr’ for the same spell as we do for multiple values of ’dskod’, this is due
to the fact that there is no logic explanation for this phenomenon. We will look

Contents 43

at these records later. The number of records having this abnormality is less than
1%.

* bfl_dskod, contains ’ajo_prod_nr_fra_prod_job’ for the subperiod 2008-2011 which
the spell covers. ’ajo_prod_nr_fra_prod_job’ is believed to be the equivalent of
"dskod’ in DST dataset BFL (e-indkomst). As for ’dskod’ we do observe per-
sons which on same firm id in a continuous period have multiple values of
"ajo_prod_nr_fra_prod_job’. In this case we choose the value of "ajo_prod_nr_fra_prod_job’
which corresponds to 1

Documentation Spell dataset - all_prim_employ_spell

the period of the spell in which the person worked the largest amount of hours
(or the where the largest salary was obtained if two different values of *dskod’ have
the same amount of hours worked). See variable ’bool indicating multiple dskod
subspell’ and dataset *all_mult_dskod_subspell’.

* bfl_arbgnr8 contains "ajo_se_nr_fra_prod_job’ for the subperiod 2008-2011 which
the spell covers. "ajo_se_nr_fra_prod_job’ is believed to be the equivalent of "ar-
bgnr8’ in DST dataset BFL. As for ’arbgnr’ we do not make any subspells for
persons having more than one value of "ajo_se_nr_fra_prod_job’ for the same spell
as we do for multiple values of *bfl_dskod’, this is due to the fact that there is no
logic explanation for this phenomenon. We will look at this records later. The
number of records having this abnormality is less than 1%.

¢ Total hours worked, contains total number of hours worked for the whole dura-
tion of the spell. We have estimated number of hours worked using ATP-data for
the period 1985-2007. We have directly used the variable containing number of
hours worked for the period 2008- 2011 which we get from dataset BFL.We keep
yearly number of hours worked for every year in-between the start date and end
date of the spell in subspell dataset "all_lon_subspell’.

» Total salary, contains total salary for the whole duration of the spell. We keep
yearly salary for every year in-between the start date and end date of the spell in
subspell dataset *all_lon_subspell’.

* bool indicating secondary employment subspell, boolean variable which indi-
cates whether or not there exists a secondary employment spell mapping to the
primary employment spell. Please see dataset *all_sec_employ_subspell’ for more
information about this *'mapping’.

¢ bool indicating multiple dskod subspell, as argued the primary employment spell
might have multiple values of "dskod’ and/or multiple values of "bfl_dskod’. We
save the monthly records for any such spell in dataset ’all_mult_dskod_subspell’.
"bool indicating multiple dskod subspell’ is a boolean variable which indicate
whether or not there exists such a multiple dskod subspell.

e Person spell id, is an identification key mapping from the primary employment
spell to matching subspell records. Combinations of pnr and person spell id are
unique.

The dataset consists of all primary employment spells existing in the income tax
reports CON 1985-2004, RAS 2005-2007, and BFL from 2008. We have not limited

44 Contents

the spell data population, but the IDAN employment data only includes persons with
permanent address end of the year.

5 Secondary employment subspell dataset SUBSPELL_E_SEC

General information

The dataset contains all secondary employment subspells. We create secondary
employment subspells whenever a given person is employed at more than one firm
at the same period. Simply speaking, we choose between primary and secondary
firms of employment by looking at number of hours worked at the different firms.
For each firm we sum hours worked at the firm in the current month plus the two
following months. In every month we choose the firm with the highest calculated
sum of hours worked as the primary employment firm. Please check separate doc-
umentation for more information about how we construct primary and secondary
employment spells/subspells.

We do not create any subspells for our secondary employment subspells meaning
that we do not keep monthly records of data with multiple values for dskod/bfl_dskod
nor do we keep yearly number of hours worked and salary. We can construct this
data if it should be of any interest.

Variables in dataset

* Personnummer, person id variable.

e Firm id, firm id variable. We use ’senr’ from 1985-2004 and 2006-2007 and we
use “cvrnr’ for period 2005 and 2008-2011 which is due to the fact that these
variables are the ones that DST uses in Cons, Ras and BFL for the given periods.
We will later make an time consistent firm identification variable probably using
information from KOB. We observe a substantial amount of job changes in 2005
and 2008 which we think is due to the change in firm id variable. We expect the
time-consistent firm id variable to solve this issue.

 Start date for spell, contains start date for spell.

* End date for spell, contains end date for spell.

* Dskod, contains dskod’ for the subperiod of 1985-2007 which the spell covers.
We observe persons which on same firm id in a continuous period have multiple
values of ’dskod’. In this case we choose the value of ’dskod’ which corresponds
to the period of the spell in which the person worked the largest amount of hours
(or the where the largest salary was obtained if two different values of *dskod’
have the same amount of hours worked).

* Arbgnr8, contains "arbgnr8’ for the subperiod of 1985-2007 which the spell cov-
ers.

Documentation Spell dataset - all_sec_employ_subspell

» bfl_dskod, contains ’ajo_prod_nr_fra_prod_job’ for the subperiod 2008-2011 which
the spell covers. As for *dskod’ we do observe persons which on same firm id in
a continuous period have multiple values of ’ajo_prod_nr_fra_prod_job’. In this

Contents 45

case we choose the value of ’ajo_prod_nr_fra_prod_job’ which corresponds to the
period of the spell in which the person worked the largest amount of hours (or
the where the largest salary was obtained if two different values of ’dskod’ have
the same amount of hours worked).

* bfl_arbgnr8 contains ’ajo_se_nr_fra_prod_job’ for the subperiod 2008-2011 which
the spell covers.

e Total hours worked, contains total number of hours worked for the whole dura-
tion of the spell. We have estimated number of hours worked using ATP-data for
the period 1985- 2007. We have directly used the variable containing number of
hours worked for the period 2008-2011 which we get from dataset BFL.

» Total salary, contains total salary for the whole duration of the spell.

* Person spell id, contains an identification key which maps the secondary em-
ployment spell to a single primary employment spell. In principle any secondary
employment subspell could coincide with more than one primary employment
spell. We only map the secondary employment subspell to the first (sorted by
start date) primary employment spell which the secondary employment subspell
coincide with.

6 SPELL.E.UN

Source: Short description of spell dataset: SPELL_E_U_N. October 24, 2016.

We merge our employment and unemployment spells. For overlapping employ-
ment and unemployment spells, we choose the spell with highest average daily hours
spent in the spell. We create residual spells for all periods where an individual is not
either employed or unemployed. We set state = N’ for these spells.

The E_U_N spell dataset contains the following variables

e pnr, person identifier.

* startdato, start date of the spell.

¢ slutdato, end date of the spell.

e avg_timetal daily, average daily hours spent in the spell.

* avg_bel_daily, average daily amount of salary(unemployment benefit).

 state, can take value 'U’, ’E’, or ’N’, i.e. unemployment, employment or residual
spell state "N”.

» spell_id_U, identifier of the unemployment spell. The combination (pnr, spell_id_U
) uniquely identifies an unemployment spell.

» spell_id_E, identifier of the employment spell. The combination (pnr, spell_id_E)
uniquely identifies an employment spell.

Abstract

I describe how we merge the constructed employment and unemployment spells
in order to create a spell dataset in which an individual is either in state 'E’, "U’ or
’N’ (employment, unemployment or residual state).

Important folders

46 Contents

The main folder used data is called Et samlet spell dataset. It is located on path

G:

Data

Workdata

702728

FAWC2728

test. Within the folder, datasets are kept in folder Dataset, logs are kept in Logs,
PDF output of the programmes are kept in PDF, and SAS programmes are kept in
programme.

Introduction We merge the constructed employment and unemployment spells
for period 1985-2013. We construct an algorithm which chooses between the con-
structed employment and unemployment spells whenever to such spells overlap.
Note that at this moment we do not smooth/overwrite any of the resulting "E’, *U’,
and "N’ spells. E.g., short periods of "N’ spells between two "E’ spells at same em-
ployer could be overwritten such that the three spells, ’E’-’"N’-"E’, would result in
one 'E’ spell spanning the whole period.

Description of the individual SAS programmes

01-join_E_U_v3 The purpose of this SAS programme is to find which employment
and unemployment spells over- lap. We create boolean variables for both employ-
ment and unemployment spells which indicate whether the employment(unemployment)
spell overlaps an unemployment(employment) spell.

The resulting datasets of this programme are

e _01_E_spells_bool_overlay,
e _01_U_spells_bool_overlay,
e _01.all_U_joined_records.

The analysis of this programme shows that 18% of all employment spells overlap
one or more unemployment spells.

02-join_E_U_v3 The purpose of this programme is to define primary state for em-
ployment and unemployment spells which overlap.

We first check whether the start date(end date) of the unemployment spell is
within five weekdays of the start date(end date) of the employment spell. If so, then
we set state equal to *U’ for the overlapping period since the start date and end date
of the unemployment spell are more credible than the start date and end date of the
employment spell. E.g., consider a primary employment spell with start date 1. of
January and end date equal to 31. of January and an unemployment spell with start
date equal to 28. of January and end date equal to 15. of March. In this case the
overlap between the two spells is within five weekdays of the end date of the em-
ployment spell, thus we set primary state equal to *U’ for the period 28. of January
to 15. of March and primary state equal to "E’ for the period 1. of January to 27. of
January. In the case where the overlap is not within five weekdays then we choose
the primary state based on the average number of hours employed/unemployed for
the two spells. E.g., consider again an employment spell with start date 1. of January
and end date equal to 31. of January and an unemployment spell with start date equal

Contents 47

to 14. of January and end date equal to 15. of March. The overlapping period (14.
of January to 28. of January) is not within five weekdays of the employment spell,
thus we choose the primary state of this period based on which of the spells have the
largest amount of average hours in the spell. Assuming that the employment spell
has the largest amount of average hours then the primary state of the period 1. of
January to 31. of January is 'E’ and the primary state of the period 1. of February to
15. of March is "U”’.
The resulting dataset of this programme is

02_temp_E_U_merged _spells. 03-join_.E_U_v3 The purpose of this SAS pro-
gramme is to add employment and unemployment spells which in programme 01
was found not be overlapping to the spells resulting from programme 02. Further,
we create residual spells for periods where an individual is not in either state 'E’ or
"U’. The residual state is named "N’.
The resulting dataset of this programme is

_03_E_U_N_merged_spells. 04-Analyse_vl The purpose of the SAS programme
is to conduct an analysis of the constructed E-U-N spell data. We count the stock of
individuals in employment, unemployment, and in the residual state at the first day
of each week between 1985-2013. Further, we compute average duration, average
daily salary/benefit, and average hours spent of spells within the three states. 1p. 1
of the PDF.

2p. 24 of the PDF.

7 Yearly and Yearly Smoothed spells

7.1 SPELL_E N_YEARLY SMOOTH

Folder and programme
The folder containing programmes, data, output, and log files is located at path
G:
Data
Workdata
702728
FAWC2728
test
September2017
EmploymentSpells. The SAS- programme used to construct the dataset is called
SpellsENYearlySmoothv?2. The resulting dataset is called SPELL_EN_YEARLY_SMOOTH.
Constructing the dataset
We construct yearly smoothed E-N spell data using spell datasets SPELL._PRIM_EMPLOY
and SUBSPELL_LOEN. First, we merge the two datasets which result in a yearly
employment spell dataset. We alter end dates of spells in order to ensure that em-

48 Contents

ployment spells do not overlap each other. The employment spell data intentionally
include overlapping employment spells within a month. Whenever two employment
spells overlap within a month we alter the end date of the first spell such that it ends
one day prior to the second employment spell.

Next, we smooth employment spells. We identify subsequent employment spells
for which an individual made a job-to-job transition or a recall. We alter the end
date of the first employment spell to the day prior to the start date of the second
employment spell for job-to-job transitions with a maximum gap of 14 days between
two employment spells. For recall employment with a maximum gap of 93 days
between two employment spells, we combine the two employment 1There exists
few cases in which one of the overlapping spells starts later than the other and ends
prior to the other. E.g. consider spell A covering 1st of March to 31 of March and
spell B starting 5th of March and ending 20th of March. In this case, spell A is split
into two spells, i.e. one spell from 1st of March to 4th of March and one spell from
21st of Match to 31 of March, and spell B is left unchanged.

Two subsequent employment spells at two employers is referred to as a job-to-
job transition. Two subsequent employment spells at the same employer is referred
to as a recall.

spells into one employment spell covering the entire period between the start date
of the first employment spell to the end date of the second employment spell.

We do not alter hours worked or earnings for smoothed recall employment spells
or smoothed job-to-job transition employment spells for which the job-to-job transi-
tion occur within the same year. For smoothed job-to-job transitions spells covering
two years, we do not alter earnings and hours in the first year. In the second year,
we set earnings (hours worked) equal to average earnings (hours worked) per day in
the first year of the employment spell tines the duration in days of the employment
spell in the second year.

We create yearly non-employment spells in all gaps between employment spells.
We create a non-employment spell id named spell .id_N.

Last, we rename and collapse variables compared to spell data SPELL_PRIM_EMPLOY
and SUBSPELL_LOEN. We rename yr_lontimer_estimated to timer, yr_lonblb to be-
loeb, startdato to start_dato, and slutdato to slut_dato. We collapse spell_id_16 and
spell_id_N to one variable called spell_id.

List of variables

* pnr, person identifier,

* start_dato, start date of spell

* slut_dato, end date of spell

* spell_firm_id, spell firm identifier

* state, state of spell, employment spell (E) non-employment spell (N)

» spell_id identifying different spells within combinations of (pnr and state)
* aar, year of spell

* beloeb, earnings

 timer, hours worked estimated using Lund/Vejlin algorithm

Contents 49

31.6% of employment spells are smoothed due to job-to-job transitions and 8.62%
percent are smoothed due to recall employment.

As start and end dates of spells are the more inaccurate information compared to
yearly earnings information.

E.g. consider an employment spell ending 20th of December 1991 and a subse-
quent employment spell starting 4th of January 1992 at two different employers. We
smooth the first employment spell such that it ends 3rd of January. We set earnings
and hours worked equal to three times the average earnings and hours worked of the
employment spell in 1991. For the part of the smoothed employment spell in 1991
we do not alter earnings or hours worked.

8 SUBSPELL_LOEN

Name of dataset: subspell_lon

General information

The dataset consists of subspells containing yearly salary and yearly number of
hours worked for a given year in the duration of the primary employment. We create
such subspells for all years in the duration of the primary employment spell. The
combination of pnr and person spell id tells which primary employment spell that
each record maps to.

Variables in dataset

e Personnummer, person id variable.

» Start date for spell, contains start date of the subspell. It might be the case that
the duration of the subspell is less than an year which occurs when the duration
of the primary employment spell is less than an year.

* End date for spell, contains end date of subspell.

e Total yearly hours worked, contains yearly number of hours worked for the
given year of the primary employment spell. We have estimated number of hours
worked using ATPdata for the period 1985-2007. We have directly used the vari-
able containing number of hours worked for the period 2008-2011 which we get
from dataset BFL.

» Total yearly salary, contains yearly salary for the given year of the primary em-
ployment spell.

* Year, contains the year of the subspell.

* Person spell id, contains an identification key which maps the subspell to the
primary employment spell from which the subspell was created.

50 Contents

9 Constructing spell firm identifiers

9.1 Purpose

A spell-firm-id and spell-arb-id are constructed from existing datasets. Two versions
of firm identifiers are constructed. The first version constructs a CVRNR for the en-
tire period mapping SENR to CVRNR using ESR_SE_CVR. It is important that the
spell-firm-identifier can match the firm identifier in IDAN and identifies an economic
unit, i.e. being matched with the CVRNR in FIRM, Firm statistics. The second ver-
sion constructs an over-time CVRNR or OKNR which attempts to identify the same
economic unit over time by taking into account changes in CVRNR, merges and
splits or off-springs. In the first version of firm identifiers the main source is the re-
porting of taxable income from jobs paying taxable income. Before 2008 the source
datasets are CONESR and RAS_CONESR. From 2008 the source dataset is BFL.

The spell workplace identifier identifies a physical or fictitious workplace. A
physical workplace is named an establishment. It is a well-defined geographical
unit which produces a few products with a well-defined group of workers.

In the first version of the workplace identifier the main sources are the same as
for the firm identifier. In the period 1980 to 1994 the variable used is ARB_STK,
from 1995 ARB_NR is used.

The second version of the spell workplace identifier uses the IDA variable LBNR
which defines an over-time workplace identifier based on the concept of a permanent
workplace.

9.2 Spell firm identifier

A job spell is terminated either by being associated a new firm identifier or by a gap
of more than 14 days without being associated a new firm identifier.

An economic unit my have several fiscal or legal identifiers. If a job is being
reported using several of these identifiers it creates a fictitious job change/new spell.
An OKNR may be associated one or more CVRNR. And a CVRNR may be associated
one or more SENR. In order to avoid fictitious job changes OKNR is used in the first
version of spell firm identifier, or a CVRNR chosen by Statistics Denmark may also
be used to carry the same information as OKNR.

An ongoing project in Statistics Denmark, DRDS Firm Warehouse, will produce
an over-time OKNR using more data than job-flows. Their identifiers will only be
constructed from 2010 and onwards.

Contents 51

9.3 Firm-id before 2008

The source for firm-id for employment spells before 2008 is CONESR. This dataset
contains annual reports for earnings and withheld taxes for all persons working in
Denmark.

The dataset has 4 firm identifiers:

* SENR, A firm account number for tax and custom payments, all years

* ARBGNR, IDA identifer for unit reporting wages for taxation, without sector
prefixIDA identifier unit reporting wages for taxation, without sector prefix., all
years. It is equal to SENR

* ARBGNRY, , all years

* ARBGNRS, An old IDA identifier for unit reporting wages for taxation without
sector prefix, 1980-1984

All SENR can be matched to a SENR in dataset ESR_SE_CVR.

SENR is only associated one CVRNR at any date, but a CVRNR can be associated
many SENR at any date.

For each (year, SENR) the dataset ESR_SE_CVR is used to find the CVRNR it is
associated at the end of the year. SENR is associated in the middle of a year.

This CVRNR is used as the first spell firm-id for the years 1980-2007.

10 ANALYSIS OF IDAN _FIDA_MIA

Chapter 5
Raw Unemployment spells

The jobs construct raw unemployment spells RAW_UNEMPLOYMENT.
The dataset contains the following variables:

Table 12 List of Variables - SPELL_U

Variable name Title

PNR Person identifier, encrypted CPRNR number

JOB_START_DATO In SPELLS, the first day of an employment. ANS_TYPE
equal to 1 or 2.

JOB_SLUT_DATO In SPELLS, the last day of an employment. ANS_-TYPE
equal to 1 or 2.

BELOEB Earnings or benefits in the spell

BOOL_SUBSPELL_CHANGE_OF _SOURCE Boolean variable indicating whether the unemployment
spell is constructed using more than one DST register.

SPELL_ID SPELL, An identifier of a spell
STATE State for a spell: U: All observations have state U.
TIMER Hours worked estimated using Lund/Vejlin algorithm

The SAS programmes used to construct unemployment spells are documented
below. The jobs use registers LC and SHSS for the period 1984-2007, and ILME
and OF from 2008.

The unemployment registers change in 2007 from LC and SHSS to ILME and
OF which among other things improve the quality of from- and to-date of the spells.
It is possible to compare the two data sources in 2007. The constructed raw unem-
ployment spells do not contain a break in 2007; thus there are no potential problems
arising from the change in data sources.

The unemployment spells have been constructed such that they contain individu-
als who receive benefits for which it can be assumed that they are actively searching
for a job. Thus, the unemployment spells constructed primarily contain individuals
who receive cash benefits (kontanthjelp) or unemployment insurance benefit (dag-
penge). Therefore, the unemployment spells do not contain individuals who partic-
ipate in active labour market programmes or individuals who are on leave as these

53

54 Contents

individuals cannot be assumed to be actively searching for a job. It is planned to add
separate active labour market programmes and leave spells in a later version.
Description of the individual SAS programmes:

00_Driver_before_2008.v1 The driver programme runs the SAS jobs needed for
generating the unemployment spells. The driver job can be edited using the follow-
ing SAS macro variables:

* INOBS, controls how many records are read: max or an integer number.

* BOOL_DELETE, deletes temporary files after each step.

* BOOL_PDF_ON, controls generation of PDF files for description and debug.

e LIB_IN and NAME_IN_DATA define SAS library and file name for in data.

e LIB_OUT, library for storing permanent output data. Test and temporary data are
stored in \temp. The files must be deleted manually when they are not needed in
the job anymore.

« END_YEAR_SHSS_BEL, last year for dataset _01_SHSS_BEL

« END_YEAR_SHSS_SPELL, last year for dataset -02_SHSS_SPELL

e START_YEAR and END_YEAR, determine the period for which the spells are
generated

e START_YEAR_SUB_SPELLS and END_YEAR_SUB_SPELLS, determine the
period for which sub-spells and other spells than UNEMPLOYMENT are gener-
ated

00 CRAM _kalender CRAM week number 1 starts in week 50-52 in the previous

year.
Job cram_kalender reads an excel file with information about the relation of

CRAM weeks and calendar weeks. It creates the yearly file cram_kalender. Both

files are stored in \data\ workdata\ 702728\ spell\datasets\ unemployment_spells\ cram_kalender.
The job creates the variables:

* week_1l_cram_in_real_week for weeks 1,2,3, mapping from cram_week_number
for real week_number.

* max_week_cram, the number of cam weeks in this year

¢ difference, the difference in number of weeks for calendar week and cram week
for weeks 452/53

_01_SHSS _before_2008_2021.v1 SHSS is used for two tasks:

e Itis used to add amounts to the unempoyment spells. This requires that monthly
data is generated.

e It is used to compute both spell dates and amounts to all other spells than unem-
ployment spells and for sub-spells.

It generates two datasets:

The dataset unemploy SHSS_BEL covers the years 1985-2007. From 2008 the
dataset ILME is used.

The dataset unemploy SHSS covers the years 1985-2006. From 2007 the dataset
OF is used.

Contents 55

SHSS is a yearly dataset where yearly amounts of benefits are stored in BELxx
and the monthly duration are stored in different variables VARMMxxmm, where xx
is a code identifying the type of benefit and mm identifies the month of the dura-
tion, e.g., VARMMYV 10 with value 30 refers to an individual who received pension
benefits for 30 days during the 10th month (October). The value of the variables
is an integer in the interval [0, 30]. The mapping between VARMMxx and BELxx
variables is inferred as it is not documented by DST. The mapping can be found in
the following APPENDIX.

The job has two SAS macros:

SAS Macro TRANSPOSE_VAR The macro has four arguments:

1. SHSS variable name VARMMxxmm containing the duration, assigned to variable
VARIGHED in new dataset

2. Name of new dataset (TRANSPOSE_SHSS)

3. Month identified by mm in the SHSS variable name, assigned to variable MONTH
in new dataset

4. Name for duration this month for benefit xx, VARMMXxx, assigned to variable
KODE in new dataset

For each record with a positive duration a monthly record is output to dataset
transpose_shss with three more variables: MONTH which contains the month,
KODE which contains the duration variable name without month, i.e. VARMMXX,
and VARIGHED which is the value of the argument VARMMxxmm.

STEP 1 This step extracts the relevant variables from dataset SHSS. SHSS only
contains data about durations and received benefit, therefore, start-date and end-date
must be imputed.

A new temporary dataset named transpose_shss is created from SHSSusing
macro transpose.

The macro is called with the arguments VARMMxxmm, TRANSPOSE_SHSS, mm,
VARMMxx

formm=1,2,...,12

for xx = all unemployment codes, all leave codes, all labour market codes, and
all pension codes, see APPENDIX.

STEP 2 The amounts are added to franspose_shss, such that a new dataset trans-
pose_sort_bel_2 where each record will contain the yearly benefits, BELXX, MONTH,
name of benefit, VARMMXxx, and monthly duration , VARIGHED.

Number of monthly hours associated with the benefit is calculated as timer =
160x(varighed/30)

STEP 3 Temporary dataset transpose_shss_sort_bel2 containing duration aggre-
gated to yearly duration in order to match the yearly benefits BELLXX.

The yearly benefits for unemployment are calculated as bel_unemp = BEL_ARB
+ BEL_AF + BEL_AK. For now amounts for other benefits are not calculated.

56 Contents

Next a new dataset transpose_shss_sort_bel3 is created containing monthly data
on duration and benefits. The yearly benefits are allocated according to the fration
of duration in this month.

Now durations are grouped into

e U, unemployment, as a sum of VARMMA, VARMMAFA, VARMMAFB, VAR-
MMAFT,

¢ N, others, is a sum of VARMME, VARMMK, VARMML, VARMMLYD, VAR-
MMO, VARMMSE, VARMMSS, VARMMU, VARMMYV

Durations and amounts for records with ’ KODE_AGG’ = "UNEMPLOYMENT’
come from the following variables:

* VARMMA: Unemployment benefits excl. recipients of cash benefits. Amount
received: 'BEL_ARB’.

¢ VARMMAFA: Cash benefit. Amount received from: "BEL_KON1’, " BEL_KON?2’,
"BEL_KON3’,

¢ VARMMAEFB: Cash benefit. Amount received from: "’ BEL_KON1’, ' BEL_KON2’,
"BEL_KON3’, " BEL_KON194’, " BEL_KON294’, "BEK_KON394’, " BEL_KON494",
"BEL_KONS598’, " BEL_KON699°.

* VARMMAFF: Unemployment benefits (for years 2001-2005). Amount received:
'BEL_LYD’.

* VARMML: Unemployment benefits (for years 2006-2007). Amount received:
"BEL_LYD’.

inds’t 5)

Now records with ’KODE_AGG’ = unemployment are aggregated. Multiple
records exist whenever an individual changes benefit within ’KODE_AGG’ = UN-
EMPLOYMENT, e.g. an individual changing from unemployment insurance benefit
(dagpenge) to cash benefit (kontanthjelp). Yearly amounts of received benefits for
records with ’KODE_AGG’ = UNEMPLOYMENT are computed.

JOB_START_DATO and JOB_SLUT_DATO will be defined using the following
algorithm.

Consecutive months with”"VARMXXYY’ > 0 are regarded as a spell. JOB_START_DATO
of the spell is set equal to the first day in the month if "VARMMXXXX’ = 30. If
"VARM’ < 30 then we look at the next months’ value of "VARM’ for the same in-
dividual on the same code. If this next months’ *"VARMM’ < 30 then start date is
set equal to first day of the month, otherwise if it is equal to 30 then start date is set
equal to the last day of the month minus the value of "VARM’. E.g. ’"VARMMXX-
01’ = 15 and "VARMMXX-02" = 20. In this case start date is set equal to first of
January as the unemployment spell is considered to be a part-time unemployment
spell. E.g. "VARMXX-01 = 15 and "VARMXX-02’ = 30. In this case, we believe
that the unemployment spell is a full-time unemployment spell and we set start date
equal to 15th of January.

JOB_SLUT_DATO is defined in the same way, i.e. end date is set equal to the last
day of the month if "VARMM’ = 30. Otherwise, if "VARMM’ < 30 and the previous
month’ "VARMM’ < 30 then we set end date equal to the last day of the month. If

Contents 57

the previous month’ "VARMM’ = 30 then we set the end date equal to the first day
of the month plus "VARMM’.

In this version, only unemployment spells are created.

The analysis of the programme shows that around 1-4 percent of all records have
yearly amount of received benefit CBEL_YEARLY") equal to zero.

DST documents that around 2 percent of records in SHSS have amount of re-
ceived benefit equal to zero due to faulty data.

STEP 4 In this the year all benfits are imputed for each KODE value VARMMXXx.
For some different xx different BELyy are used over the years.
item - DETTE SKAL JEG LIGE HAVE CHECKET

_02-L.C_before 2008 2021 _v1 . The SHSS is not used for determining the start/end
dates for unemployment spells; instead LC is used. E]

The resulting dataset is unemploy._02_LC.

A debugging dataset temp._lc_temp_3 can be generated.

LC contains weekly unemployment data for years 1985-2007. LC is used to con-
struct unemployment spells for years 1985-2006. LC does not contain information
about amount of received benefit. The information extracted from SHSS in pro-
gramme _01_SHSS_before_2008_2001_v1 is used to get information on amount of
received benefits for each unemployment spell.

This SAS programme extracts data from LC and prepare the data in order
to make unemployment spells. The dataset contains variables LGRADWW and
LARSAGXX. WW where "WW’ is CRAM week number. Variable LGRADWW
has values in [0, 1000] and LGRADWW = 1000 corresponds to five days of unem-
ployment, LGRAD = 800 corresponds to four days of unemployment etc.

The weeks and years in LC are ’"CRAM-weeks’ meaning that they follow the
"CRAM-calendar’. ’"CRAM-weeks’ are usually, but not always, lagged by two
weeks compared to the calendar week. ’'CRAM-weeks’ are converted to calendar
weeks using a mapping file which maps "CRAM-weeks’ to calendar weeksﬂ

Variable 'TLARSAG’ can take seven different valuesﬂ 76 percent of the weekly
records are unemployment insurance benefit (dagpenge) coded as 'LARSAG’ equal
to missing. Another 16 percent of the weekly records are cash benefits (kontan-
thjeelp) coded as 'LARSAG’ = 8. 'LARSAG’ € {2,4,5,6} are holiday benefits, and
'LARSAG’ € {1,2,3} are various special unemployment benefits agreed on with
specific unions. These special agreements only account for 1 percent of the weekly
records.

The weeks are compressed to spells identified by JOB_START _DATO and JOB_SLUT_DATO.

Variable ’'KODE_AGG’ has the following values 'LEAVE’ if'LARSAG' € {4,5,6},
otherwise ’/KODE_AGG’ takes value "UNEMPLOYMENT’.

The dataset also contains the following variables from LC

5 In DS documentation the LC dataset is named CRAM.

6 See CRAM _kalender
7Seehttps:/1lmdg.econ.au.dk/datasets_doc/lc_vde.pdf
8 Seehttps:/lmdg.econ.au.dk/datasets_doc/lc_vde.pdf

https:/lmdg.econ.au.dk/datasets_doc/lc_vde.pdf
https:/lmdg.econ.au.dk/datasets_doc/lc_vde.pdf

58 Contents

* AKASSE, FSE variable, see AKASSE_KODE

* EFMARK, Indicator for postemployment payment, 0: does not receive post-
employment payment, 1: does receive postemployment payment

e FORSIKRINGS_KATEGORI_KODE, Code for category of insurance

e FORSIKREDE_TIMER, Number of hours per week covered by unemployment
insurance.

The variables LGRADWW and LARSAGWW are converted to a new vari-
able LGRAD_LC and LARSAG_LC of weekly data identified by YEAR_LC and
WEEK _LC. Weeks 1-3 are hand coded weeks, weeks 4-9 are converted using
Yomacrooutput AND weeks 10-53 using %macrooutput10.

03_LC_before_2008_2021_vl Unemployment spells are created using unemploy.lc.
Consecutive weeks with Igrad > 0 and ’kode_agg’ = 'unemployment’ are regarded
as one spell.

Start date and end date are defined using the following algorithm for full-time
and part-time:

Full-time unemployment, LGRAD = 1000 Consecutive weeks with LGRAD =
1000 and KODE_AGG = "UNEMPLOYMENT" is considered a spell. The first and
last week may have LGRAD ; 1000 and the start and end date are modified with the
days defined by LGRAD for these weeks.

E.g. consider records where ’lIgrad’ = 600 and next month’s ’lgrad’ = 1000. In
this case start date is set equal to Monday of the week incremented by 5 —3 = 2
days resulting in the start date of the spell equal to Wednesday of the week. End
date is defined in the same way.

Part-time unemployment, LGRAD ; 1000 Consecutive weeks with LGRAD =
1000 and KODE_AGG = "'UNEMPLOYMENT" is considered a spell. LGRAD for
the spell is the average over these weeks.

For each weekly observation, 'number of hours’ unemployed is computed. These
number of hours are only going to be used when merging employment and unem-
ployment spells together. If an overlap between these is found the number of hours
unemployed and number of hours worked are compared in order to define which
state, employment or unemployment, is chosen to be the primary state. Number
of hours unemployed is computed as 37 > "LGRAD’ 1000. For the compute spells
NUMBER_OF_HOURS are summed over the days in the spell.

A boolean variable "bool_multiple_larsag’ is created which indicates whether the
unemployment spell has more than one value of ’larsag’, e.g. an unemployment spell
where the individual changes from unemployment insurance benefit to social assis-
tance sometime during the unemployment spell. We construct subspells for these
cases, i.e. we save the weekly records in a subspell dataset for all unemployment
spells where “bool_multiple_larsag’ = 1. We index each LC unemployment spell by
’lc_spell_id’ and we index each subspell by ’Ic_subspell_id’.

04-L.C_before_2008_2021_vl Dataset SHSS contains information on the yearly
amount of received unemployment benefits. We merge this information from pro-
gramme 01 onto each computed LC unemployment spell from programme 03. For

Contents 59

each unemployment spells and for each year the unemployment spell span, we com-
pute the duration in days of the unemployment spell and we compare this to the total
duration in days of all unemployment spells for the given individual in the given
year. Let ’day_dur’ equal the duration in days of the unemployment spell and ’to-
tal_day_dur’ equal the total duration in days of all unemployment spells. We now
assign the amount equal to day_dur total_day_dur

05-ILME _from_2008_2021_v1 The purpose of this SAS programme is to extract
information on the amount of benefit received for a given unemployed individual
for years 2008 to 2013 using DST register ILME. The variables of interest are
’vmo_startdato’, *vmo_slutdato’, 'vmo_indkomst_type kode’, and all the variables
which describe the amount of benefits received. The first two variables contain in-
formation about start date and end date, and ’vmo_indkomst_type_kode’ contain in-
formation about which kind of benefit the individual received. The reason why we
do not use ILME as the source for constructing unemployment spells is that the vari-
able *vmo_indkomst_type_kode’ does not deliver as detailed information as we can
find in dataset OF. We find that variables containing information about the amount
of received benefits can be negative. However, if we aggregate the amounts for a
consecutive period of received benefits the aggregated amounts are almost always
non-negative. We conclude that the negative amounts are corrections. Therefore, we
aggregate the amounts (negative and positive) when constructing ILME spells. An
ILME spell is constructed as a consecutive period of received benefits on the same
’vmo_indkomst_type_kode’. ILME spells with ’'vmo_indkomst_type_kode’ equal to
’04’,°06’, or °24’ are regarded as potential unemployment spells, thus these spells
will be merged onto unemployment spells constructed using OF for 2008 to 2013.
We use the term potential unemployment spells since ’vmo_indkomst_type_kode’
doe not uniquely determine whether the ILME spell originates from a spell of un-
employment, pension, leave, etc. E.g. 'vmo_indkomst_type kode’ = 04 is used for
unemployment insurance payments, pension payments, flex job payments, etc. We
truncate the created ILME spells at 31. of December 2013. We reduce all amount
variables by the duration in days in the period 2008-2013 compared to the total
duration of the ILME spell. The resulting dataset of this programme is

06-OF__from_2008_2021_v1l The purpose of the OF SAS programmes is to make
unemployment spells using dataset OF. OF consists of almost all benefits for in-
dividuals aged between 16-64. We extract information for the period 2007-2013.
The purpose of this SAS programme is to extract data from OF and make unem-
ployment spells. In the next programme, we add amount of received benefit to the
constructed unemployment spells. The variables of interest are "pti_vfra’, ’pti_vtil’,
“pti_timer_per_uge’, and ’pti_tilstand_kode’. The variables contain information about
start date and end date, the amount of hours per week, and the kind of benefit re-
ceived. 8DST documents that around 2data.

We create variable *kode_agg’ which aggregates the different values of "pti_tilstand_kode’
into unemployment, active labor market programmes, pension, and leave.9 A full
list of the assignment of the values of ’pti_tilstand _kode’ to ’kode_agg’ can be
found in the appendix. We truncate the OF records if end date exceeds 31. of De-

60 Contents

i

cember 2013. We compute the total number of hours for each record as ’days’
“pti_timer_per_uge’ 7 , where ’days’ is the truncated duration measured in days be-
tween start date and end date. We create OF unemployment spells by compressing
consecutive records with "’kode_agg’ = 'unemployment’. The existence of consecu-
tive records on 'kode_agg’ is due to either a change of ’pti_tilstand_kode’ (within
"kode_agg’ = ’unemployment’) or a change of ’pti_timer_per_uge’ (within same
value of ’pti_tilstand_kode’). We set number of hours for the compressed record
equal to the sum of hours for the consecutive records. We create OF subspells on
"pti_tilstand_kode’ and we create a boolean variable *bool_of_subspell’ which indi-
cates whether the OF unemployment spell has multiple values of pti_tilstand_kode’.10
We index OF unemployment spells by *of_spell_id’ and subspells by *of _subspell_id’.
We create a dataset containing the mapping between *of _spell_id’ and *of _subspell_id’.
The resulting datasets of this programme are

e _06_OF_spells_without_bel,
e _06_OF_subspells,
e _06_OF_subspells_mapping.

The analysis of this programme shows the distribution of average weekly hours
’spent’ in unemployment.

_07-OF _from_2008_2021_v1l The purpose of the SAS programme is to merge in-
formation about the amount of benefits received onto each constructed OF unem-
ployment spell. OF unemployment spells span the period 2007- 2013. ILME span
the period 2008-2013, thus we also merge the unemployment spells with SHSS from
programme 01 in order to get amount of benefits for 2007.

We merge variables 'vmo_a_indk_am_bidrag_fri’ and 'vmo_b_indk_am_bidrag_fri’
from ILME dataset constructed in programme 05. We compute the number of days
the ILME spell overlaps the OF unemployment spell and we assign the fraction of
benefits which corresponds to the fraction between the number of overlaying days
compared to the total duration of the ILME spell. E.g., consider an OF spell span-
ning the period of 1. of January to 25. of January and an ILME spell spanning the
period 10. of January to the 30. of January with benefits equal to 8.000 DKK. The
number of overlaying days is sixteen and the total duration of the ILME spell is 21.
In this case we assign 16 21 * 8.000 DKK to the OF unemployment spell.

We merge yearly amount of received benefits from SHSS for year 2007 onto
the OF unemployment spells. As for LC unemployment spells, we split the yearly
amount of received benefits from SHSS onto the OF unemployment spells by the
fraction between duration in days in 2007 of each OF unemployment spell and the
total 2007 duration of all OF unemployment spells for a given individual.

The resulting dataset of this programme is We plan to add active labor market
programmes, pension, and leave spells in a later version. 10We keep all *pti_tilstand kode’
spells as subspells, i.e. for OF unemployment spell for which ’pti_tilstand_kode’
changes and for OF unemployment spells for which it does not change. In this way,
it is possible to merge ’pti_tilstand_kode’ back onto the OF unemployment spells
and e.g. to distinguish between individuals receiving unemployment insurance ben-
efit and individuals who receive cash benefit.

Contents 61

08-Spells_full_period_2021_vl The purpose of the SAS programme is to combine
the LC and OF unemployment spells in order to construct unified unemployment
spells for the spell period 1985-2013. We input LC unemployment spells cover-
ing period 1985-2006 from programme 04 and we input OF unemployment spells
covering period 2007-2013 from programme 07. We compress LC and OF unem-
ployment spells for which LC end date is equal to 31. of December 2006 and OF
start date is equal to 1. of January 2007. We index the resulting unemployment
spells by ’spell_id’. We create subspells for resulting unemployment spells which
originates from both a LC and an OF unemployment spell, and boolean variable
"bool_subspell_change_of_source’ indicates this event. We keep a mapping dataset
which maps (Cpnr’, ’spell_id’) into (pnr’, ’lc_spell_id’, of_spell_id’) such that it is
possible to find corresponding LC and OF unemployment spells for all resulting
unemployment spells. The resulting datasets of this programme are

e _08_U_spells,
e _08_U_subspells,
¢ _08_U_mapping.

The analysis of this programme consist of a time series plot and a count of the stock
of individuals in the constructed unemployment spells at the first day of every month
between 1985-2013. 11p. 6 and 8 of the PDF. 12p. 18 of the PDF. 7

11 Appendix

List of all values of variable ’pti_tilstand_kode’ with corresponding value of kode_agg
Unemployment KODE_AGG = UNEMPLOYMENT consists of the following

types:

e 5010: Ledige, detaljer uoplyst

e 5020: Ledige dagpengemodtagere

* 5030: G dage

* 5035: Arbejdsmarkedsydelse

e 5080: Ledige kontanthjelpsmodtagere

e 5090: Ledighedsydelse, detaljer uoplyst

e 5100: Ledighedsydelse mellem fleksjob

* 5110: Ledighedsydelse i visitionsperioden fgr forste fleksjob
* 5140: Ledighedsydelse efter ustgttet beskaftigelse
e 7075: Ledighedsydelse SS

e 7090: Introduktionsydelse

Pension KODE_AGG = PENSION consists of the following types:

¢ 6010: Efterlgn

* 6020: Overgangsydelse
e 6030: Fleksydelse

* 6040: Delefterlgn

62

e 7020:
e 7025:

Contents

Fgrtidspension SS
Fgrtidspension

Leave KODE_AGG = LEAVE consists of the following types:

e 3110:
e 3120:
e 3130:
* 4030:

e 5040

e 5130

Orlov til uddannelse

Orlov til sabbat

Orlov til bgrnepasning
Sygedagpenge, detaljer uoplyst

: Feriedagpenge fra ledighed
* 5050:
* 5060:
* 5070:
e 5120:
: Ledighedsydelse under sygdom og barsel
* 5800:
* 6050:
* 7030:
* 7035:
* 7036:
e 7037:
* 7040:
* 7045:
* 7046:
o 7047:

Feriedagpenge fra beskaftigelse
Feriedagpenge o. a. ledhedsarsag 8
Feriedagpenge, uoplyst
Ledighedsydelse under ferie

Syge pa dagpenge eller arbejdsmarkedsydelse
Nedsatte dagpenge (par. 32)

Sygedagpenge SS

Sygedagpenge, beskeftigede

Sygedagpenge, ej beskaftigede
Sygedagpenge, detaljer uoplyst
Barselsdagpenge, SS

Barselsdagpenge, beskaftigede
Barselsdagpenge, ej beskeftigede
Barselsdagpenge, detaljer uoplyst

Labour market training KODE_AGG = AKTIVERING consists of the follow-
ing types:

e 1010:
e 1020:
« 1030:
« 1039:
e 1040:
e 1049:
e 1050:
* 1055:
¢ 1060:
e 1070:
e 1075:
¢ 1080:
e 1090:
e 1100:
e 1110:
e 1120:
e 1510:
e 1520:

Jobtraening

Individual jobtrening
Ansattelse med lgntilskud
Jobrotation
Virksomhedspraktik
Nytteindsats

Fleksjob

Fleksjob, KMD-aktiv
Fleksjob, selvstendige
Skanejob

Skanejob, KMD-aktiv
Servicejob

Arbejdspraktik

Puljejob
Rotationsansattelse
Voksenl@rlinge
Opkvalificering iflg. Integrationsloven
Ordinzr uddannelse

Contents

e 1540:
e 1550:
e 1560:
e 1562:
e 1564:
e 1570:
e 1580:
¢ 1590:
e 1591:
e 1592:
e 1593:
e 1594
e 1595:
e 1599:
¢ 1600:
e 1800:
e 2010:
e 2020:
e 2030:
e 2510:
e 2512:
e 2514:
e 2516:
e 2518:
e 2520:
e 2530:
e 2540:
e 3010:
¢ 3020:
¢ 4010:
e 4012:
e 4014:
e 4020:
e 7005:
e 7010:
e 7015:
e 7024:
e 7050:
e 7055:
e 7060:
e 7070:
e 7080:

Voksen- og efteruddannelse

Korte vejlednings- og afklaringsforlgb
Serligt tilrettelagte projekter og uddannelsesforlgb
Serligt tilrettelagte uddannelsesforlgb

Serligt tilrettelagte projekter

Vejledning og introduktion

Serligt aktiverende forlgb

Intensiv jobsggning

Vejl opkval ordinzr udd.

Vejl opkval gvrige forlgb under 4 uger

Vejl opkval gvrige forlgb over 4 uger

Vejl opkval gvrige forlgb

Mentorstgtte

Vejledning og opkvalificering

Serlig formidling

Selvvalgt uddannelse i 6 uger

Kursus i samfundsforstaelse
Danskundervisning

Serligt tilrettel. danskunderv.

Aktivering, detaljer uoplyst
Aktiveringsgodtggrelse

Forsgrgelse under vejledning, opkvalificering og virksomhedspraktik
Lgntilskud til personer i tilbud efter kapitel 12
Kontanthjelp og starthjelp under forrevalidering
Forsgg

Frivillige ulgnnede aktiviteter

Uddannelse m. voksenudd.stgtte
Etableringsydelse

Igangs®tningsydelse

Revalidering, detaljer uoplyst
Revalideringsydelse med virksomhedspraktik
Lgntilskud ved revalidenters ansattese med lgntilskud
Forrevalidering, detaljer uoplyst
Jobafklaringsforlgb

Socialtilstand detaljer uoplyst

Fgrtidspension, gammel ordning
Ressourceforlgb

Kontanthjelp (passiv)

Kontanthjelp SS

Revalidering SS

Forrevalidering SS

Stgtte til handicappede

Education KODE_AGG = EDUCATION consists of the following types:

63

Chapter 6
Dataset SPELL_EUN

We merge SPELL_E and RAW_UNEMPLOYMENT. For overlapping employment
and unemployment spells we choose the spell with highest average daily hours spent
in the spell. We create residual spells for all periods where an individual is not either
employed or unemployed. We set state ="N’ for these spells.

The SPELL_E_U_N contains the following variables:

Table 13 List of Variables - SPELL_EUN

Variable name Title

AVG_TIMETAL_DAILY AVG_-TIMETAL_DAILY, Average daily hours worked or receiving benefits in the

spell.

AVG_BEL_DAILY AVG_BEL_DAILY, Average daily amount of salary (E) or unemployment benefit (U)
in the spell.

PNR PNR, Person identifier, encrypted CPRNR number

SPELL_ID_.U SPELL_ID_U, SPELL, An indentifier of the unemployment spell.

SPELLID_E SPELL_ID_E, SPELL, An identifier of the employment spell.

JOB_START_DATO JOB_START _DATO, In SPELLS, the first day of an employment. ANS_-TYPE equal
to1or2.

JOB_SLUT_DATO JOB_SLUT_DATO, In SPELLS, the last day of an employment. ANS_TYPE equal to
1or2.

STATE STATE, State for a spell: U: All observations have state U.

65

Chapter 7
Dataset SPELL_EN_YEARLY_SMOOTH

This section describes how we create a yearly spell dataset containing employment
(E) and non-employment (N) spells. We alter end dates of employment spells for
job-to-job transitions and recall employment. We refer to this process as smoothing
of employment spells.

12 Folder and programmes

The folder containing programmes, data, output, and log files is located at path
X:/Data/Workdata/702728/Spell/ programme/EmploymentSpells
The SAS- programme used to construct the dataset is called SpellsEN YearlySmoothv?2.
The resulting dataset is SPELL_E_N_YEARLY _SMOOTH.

12.1 Description

SPELL_E_N_YEARLY_SMOOQOTH contains smoothed employment and non-employment
spells allocated to a year and is constructed by merging SUBSPELL_LOEN from the
spell on SPELL_E.

In the first step we allocate spells to a year. If a raw spell spans the beginning
or end of a year the start date and end date are modified. The income and hours are
allocated proportionally to the new spell.

In the second step we smooth the spells such that spells are not overlapping.

67

68 Contents

12.2 Constructing the Datasets

SPELL_E_N_YEARLY_SMOQOTH contains smoothed employment and non-employment
spells allocated to a year and is constructed by merging SUBSPELL_LOEN from the
spell on SPELL_E.

In the first step we allocate spells to a year. If a raw spell spans the beginning
or end of a year the start date and end date are modified. The income and hours are
allocated proportionally to the new spell.

In the second step we smooth the spells such that spells are not overlapping.

We remove overlaps by altering end dates of spells in order to ensure that employ-
ment spells do not overlap each other. The employment spell data includes overlap-
ping employment spells within a month. Whenever two employment spells overlap
within a month we alter the end date of the first spell such that it ends one day prior
to the second employment spell. [ﬂ

Secondly, we smooth employment spells. We identify subsequent employment
spells for which an individual made a job-to-job transition or a recall.|"”| For a job-
to-transition with a maximum gap of 14 days between the spells we alter the end
date of the first employment spell to the day prior to the start date of the second
employment. For recall employment with a maximum gap of 93 days between two
employment spells, we combine the two employment spells into one employment
spell covering the entire period between the start date of the first employment spell
to the end date of the second employment spell.

We do not alter hours worked or earnings for smoothed employment spells which
occur within the same year. [17] For smoothed job-to-transition spells covering two
years we do not alter earnings and hours in the first year. In the second year, we
set earnings (hours worked) equal to average earnings (hours worked) per day in
the first year of the employment spell times the duration in days of the employment
spell in the second year.

We create yearly non-employment spells in all gaps between employment spells.
We create a non-employment spell id named SPELL_ID_N. We do not allocate earn-

9 There exist few cases in which one of the overlapping spells starts later than the other and ends
prior to the other. E.g. consider spell A covering 1st of March to 31st of March and spell B starting
5th of March and ending 20 th of March. In this case, spell A is split into two spells, i.e. one spell
from 1st of March to 4th of March and one spell from 21st of March to 31st of March, and spell B
is left unchanged.

19 Two subsequent employment spells at two employers are referred to as a job-to-job transition.
Two subsequent employment spells at the same employer are referred to as a recall.

111.62% of employment spells are smoothed due to job-to-job transitions and 8.62% are smoothed
due to recall employment.

12 As start and end dates of spells is the more inaccurate information compared to yearly earnings
information.

13 ¢.g. consider an employment spell ending 20th of December 1991 and a subsequent employment
spell starting 4th of January 1992 at two different employers. We smooth the first employment
spell such that it ends 3rd of January. We set earnings and hours worked equal to three times the
average earrings and hours worked of the employment spell in 1991. For the part of the smoothed
employment spell in 1991 we do not alter earnings or hours worked.

Contents 69

ings to these non-employment spells even if it might be a U spell. These earnings
are only available in EUN spell data.

Last, we rename and collapse variables compared to spell data SPELL_E and
SUBSPELL_LOEN. We rename YR_LONTIMER_ESTIMATED to TIMER, YR_LONBLB
to BELOEB, START_DATO til JOB_START _DATO, and SLUT_DATO to JOB_SLUT_DATO.
We collapse SPELL_ID_en17 and SPELL_ID_N to one variable SPELL_ID.

Table 14 List of Variables - SPELL_U

Variable name Title

PNR PNR, Person identifier, encrypted CPRNR number

JOB_START_DATO JOB_START_DATO, In SPELLS, the first day of an employment. ANS_TYPE equal
to 1 or2.

JOB_SLUT_DATO JOB_SLUT_DATO, In SPELLS, the last day of an employment. ANS_TYPE equal to

1or2.
SPELL_FIRM_ID SPELL_FIRM_ID, SPELL, Firm ID
STATE STATE, State for a spell: U: All observations have state U.
SPELL_ID SPELL_ID, SPELL, An identifier of a spell
AAR AAR, Year for the reference period of the observation
BELOEB BELOEB, Earnings or benefits in the spell
TIMER TIMER, Hours worked estimated using Lund/Vejlin algorithm

13 SPELL_EUN_YEARLY

Documentation will be added.

14 SPELL_EUN_YEARLY _SMOOTHED

We construct yearly EUN spell data using the following datasets

Table 15 List of Variables - SPELL_EUN_YEARLY_SMOOTHED

Dataset name Title

SPELL.E.UN SPELL_E_U_N, Spells, E-U-N spells with overlaps.

SPELL_E SPELL_E, Spells, Primary jobs with overlaps.

SUBSPELL_LOEN SUBSPELL_LOEN, Subspells with wage and salary for SPELL_PRIM_EMPLOY.

RAW_UNEMPLOYMENT RAW_UNEMPLOYMENT, Spells, Unemployment with overlaps.

70 Contents

We censor unemployment spells at 1st of January 1985EW6 then delete unem-
ployment spells with end date prior to start date.

We merge SPELL_E_U_N and SPELL_E in order to have SPELL_FIRM_ID for
the merged employment spells.

15 Dataset SUBSPELL _E_SEC_EMPLOY

Documentation will be added.

16 Dataset SPELL_U

The jobs contruct =spells.

For the period 2004-2007. For the period 2004-2007 the datasets LS and SHSS
are used for constructing =spells.

From 2007 the datasets ILME and OF are used for constructing =spells.

Thus unemployment spells spanning 1st of January 2007 are constructed using
both datasets. In this case, there exist two unemployment subspells, one for the LC
period and one for theOF period.

The dataset contains the following variables:

Table 16 List of Variables - SUBSPELL_U

Variable name Title
PNR PNR, Person identifier, encrypted CPRNR number
JOB_START_DATO JOB_START_DATO, In SPELLS, the first day of an employment. ANS_TYPE equal
to 1 or 2.
BEL BEL
SPELL_ID SPELL_ID, SPELL, An identifier of a spell
STATE STATE, State for a spell: U: All observations have state U.
TIMER TIMER, Hours worked estimated using Lund/Vejlin algorithm
Abstract

I describe how we construct unemployment spells using registers LC, SHSS,
ILME and OF for the period 1985-2013.

Important folders

The main folder of the unemployment spell data is called Unemployment spells.
It is located on path G:
Data

14 Unemployment spells in SPELL_E_U_N are constructed from weekly registers. Therefore, when-
ever the week contains 1st of January 1985 it also contains days in 1984.

150.25 % of spells are deleted. The erroneous spells occur whenever the week spans 1st of January
1985 but the end date is in 1984.

Contents 71

Workdata

702728

FAWC2728

test. Within the folder, datasets are kept in folder Dataset, logs are kept in Logs, and
PDF output of the programmes are kept in PDF. Further, the SAS programmes are
kept on path programme-version fida cvr 2016.

Introduction

We construct unemployment spells and we use income registers such that each
unemployment spell contains an approximate of the amount of unemployment ben-
efit received during the spell. The unemployment registers change in 2007 from LC
and SHSS to ILME and OF which among other things improve the quality of start-
and end date of the spells. The constructed unemployment spells do not contain a
break in 2007 thus we are confident that we have circumvent the potential problems
arising from a change in data source.

We have constructed the unemployment spells such that they contain individuals
who receive benefits for which it can be assumed that the individuals are actively
searching for a job, thus the unemployment spells constructed primarily contain in-
dividuals who receive cash benefit (kontanthj&lp) or unemployment insurance bene-
fit (dagpenge). On the contrary, the unemployment spells do not contain individuals
who participate in active labour market programmes or individuals who are on leave
as these individuals can not be assumed to be actively searching for a job. We plan
to add separate active labour market programme and leave spells in a later version.
The rest of the document contains individual description of the different SAS pro-
grammes used to construct unemployment spells.

Description of the individual SAS programmes

01-SHSS_v91 The purpose of this SAS programme is to extract information on
the amount of benefit received for a given unemployed individual for years 1985
to 2007 using DST register SHSS. The variables of interest are all variables named
"VARM-XXXX-YY’ where VARM stands for *'monthly duration’, XXXX is a code
identifying which type of benefit the variable contains information about, and YY
identifies which month the variable contains information about. E.g., VARMMV 10
= 30 refers to an individual who received pension benefits for thirty days of the
month. The value of the variables is an integer in the interval [0, 30]. Variables
with ’bel” as prefix contains information about yearly amount of received benefit.
We have inferred the mapping between "VARM’ and ’bel’ variables as we have not
been able to find this in the documentation provided by DST. The mapping can be
found in the following list.

Since we only use SHSS to get information about amount of received benefit, we
do not need to define start and end date.

We assign the code of each "VARM’ variable, i.e. XXXX, and create a new
variable ’kode_agg’. The new variable can take values 'unemployment’, ’leave’,
’ALMP’, ’pension’, and ’education’.2

The following four values of code get assigned to ’kode_agg’ = ’unemployment’.

72

Contents

VARM-MAN: Arbejdslgshedsdagpenge EKSL. kontanthj@lpsmodtagere. Amount
received: 'bel_arb’.

VARM-MF: Underhold. Amount received from: bel_kon1’, *bel_kon2’, ’bel _kon3’,
’bel_kon194’, *bel_kon294’, *bel _kon394’, bel_kon494’, *bel _kon598’, *bel _kon699°.
VARM-MLYD: Ledighedsydelse (for years 2001-2005). Amount received: *bel_lyd’.

* VARM-ML: Ledighedsydelse (for years 2006-2007). Amount received: “bel_lyd’.

We now aggregate records with "kode_agg’ = unemployment. Multiple records
exist whenever an individual changes benefit within "kode_agg’ = unemployment,
e.g. an individual changing from unemployment insurance benefit (dagpenge) to
cash benefit (kontanthjelp). We compute yearly amount of received benefits for a
given individual with ’kode_agg’ = unemployment’.

The resulting dataset of this programme is

_01_shss_bel. Start and end date will if necessary be defined using the following
algorithm. We regard consecutive months with *"VARM-XXXX-YY” ; 0 as a spell.
We set start date of the spell equal to the first day in the month if "VARM’ = 30.
If "VARM’ ; 30 then we look at the next months’ value of "VARM’ for the same
individual on the same code. If this next months’ "VARM’ ;| 30 than we set start
date equal to first day of the month, otherwise if it is equal to 30 then we set start
date equal to the last day of the month minus the value of "VARM’. E.g. "VARM-
XX-01" = 15 and "VARM-XX-02" = 20. In this case we set start date equal to first
of January as we believe that the unemployment spell is a part-time unemployment
spell. E.g. ”VARM-XX-01 = 15 and "VARM- XX-02’ = 30. In this case, we believe
that the unemployment spell is a full-time unemployment spell and we set start date
equal to 15th of January.

We define end date in the same way, i.e. we set end date equal to the last day
of the month if "VARM’ = 30. Otherwise, if "VARM’ ; 30 and the previous month’
"VARM’ ; 30 then we set end date equal to the last day of the month. If the previous
month’ "VARM’ = 30 then we set the end date equal to the first day of the month
plus "VARM’.

In this version, we only create unemployment spells.

The analysis of the programme shows that around lamount of received benefit
(’bel_yearly’) equal to zero.3 DST documents that around 2records in SHSS have
amount of received benefit equal to zero due to faulty data.

02-LC_v7 Register LC contains weekly unemployment data for years 1985-2007.
We use LC to construct unemployment spells for years 1985-2006. LC does not con-
tain information about amount of received benefit. We use the information extracted
from SHSS in programme 01 to get information on amount of received benefit onto
the unemployment spells created using LC.

The purpose of this SAS programme is to extract data from LC and prepare the
data in order to make unemployment spells.

The dataset contains to types of variables, i.e. lgradXX and larsagXX. E.g.,
lgrad01 is the degree of unemployment in week 1 and larsagO1 is the type of unem-
ployment in week 1. Variable IgradXX 2 [0, 1000] and lgrad = 1000 corresponds

Contents 73

to five days of unemployment, lgrad = 800 corresponds to four days of unemploy-
ment etc. The weeks and years in LC are ’CRAM-weeks’ meaning that they follow
the "CRAM-calendar’. "CRAM-weeks’ are usually, but not always, lagged by two
weeks compared to the European calendar. We convert ’'CRAM-weeks’ to Euro-
pean calendar weeks using a mapping file which maps ’"CRAM-weeks’ to European
calendar weeks.4 Variable ’larsag’ can take seven different values. 76insurance ben-
efit (dagpenge) coded as ’larsag’ equal to missing.56 Another 16weekly records are
cash benefit (kontanthjalp) coded as ’larsag’ = 8. ’larsag’ 2 4, 5, 6 are holiday ben-
efits, and ’larsag’ 2 1, 2, 3 are various special unemployment benefits agreed on
with specific unions. These special agreements only account for 1.5We create vari-
able 'kode_agg’ which takes value’ leave’ if "larsag’ 2 4, 5, 6, otherwise kode_agg’
takes value unemployment’.
The resulting dataset of this programme is

« 02.LC.

e 03-LC_v7 We now create unemployment spells using the prepared data from
programme 02. We regard consecutive weeks with lgrad ; 0 and "kode_agg’ =
‘unemployment’ as a spell. We define start date and end date using the following
algorithm. For each record, we define a temporary variable ’days’ as ’days’ =
ceil(’l1grad’ 200). If "lgrad’ = 1000 then we set start date of the spell equal to
the first day of the week. If "Igrad’ ; 1000 then we look at the next weeks’ value
of ’lgrad’ for the same individual. If the next months’ ’Igrad’ j 1000 than we set
start date equal to first day of the week, otherwise if it is equal to 1000 then we
set start date equal to the first day of the week incremented by 5— ’days’. E.g.
consider records where ’lgrad’ = 600 and next month’s ’Igrad’ = 1000. In this
case we set start date equal to Monday of the week incremented by 5 - 3 = 2 days
resulting in the start date of the spell equal to Wednesday of the week. We define
end date in the same way, i.e. if "lgrad’ = 1000 then we set end date equal the last
day of the week. Otherwise, if "lgrad’ ; 1000 and the previous week’s ’lgrad’ ;
1000 then we set

e p. 6-7 of the PDF.

* The mapping file is called CRAM kalender_1985_2007 and it is located in the
programme folder.

* p.3of the PDE.

Missing refers to character value ’, however in 2007 missing is coded as ’.’. end date
equal to the last day of the week. If the previous week’s ’Igrad’ = 1000 then we set
end date of the spell equal to the first day of the week incremented by days - 1.7 For
each weekly record, we compute 'number of hours’ unemployed. These number of
hours are only going to be used when we merge employment and unemployment
spells together and we find an overlap between these. In that case, we will compare
number of hours unemployed and number of hours worked in order to define which
state, employment or unemployment, that is chosen to be the primary state. We
compute number of hours unemployed as 37 * ’Igrad’ 1000 .

Having computed start and end date, we compress consecutive weeks of unem-
ployment into spells. We set start date and end date of the spell equal to the com-

74 Contents

puted dates. We aggregate 'number of hours’ unemployed. We create a boolean
variable *bool_multiple_larsag’ which indicates whether the unemployment spell
has more than one value of ’larsag’, e.g. an unemployment spell where the indi-
vidual changes from unemployment insurance benefit to social assistance some-
time during the unemployment spell. We construct subspells for these cases, i.e. we
save the weekly records in a subspell dataset for all unemployment spells where
"bool_multiple_larsag’ = 1. We index each LC unemployment spell by ’lc_spell_id’
and we index each subspell by ’lc_subspell_id’.

The resulting datasets of this programme are

e _03_LC_spell_without_bel,
e _03_LC_subspells.

The analysis of the programme shows time series plots of the stock of individuals
in each week in each different ’larsag’.

04-LC_v5

Dataset SHSS contains information on the yearly amount of received unemploy-
ment benefits. We merge this information from programme 01 onto each computed
LC unemployment spell from programme 03. For each unemployment spells and
for each year the unemployment spell span, we compute the duration in days of the
unemployment spell and we compare this to the total duration in days of all un-
employment spells for the given individual in the given year. Let day_dur’ equal
the duration in days of the unemployment spell and ’total_day_dur’ equal the total
duration in days of all unemployment spells. We now assign the amount equal to
day_dur total_day_dur ’ bel_yearly to each unemployment spell.

The resulting dataset of this programme is

_04_LC_spells_with_bel. The analysis of the programme shows that around 1records
have amount of received benefit equal to missing. These missing values are due to
no match between the constructed LC unemployment spells and the yearly amount
of received

As a special case only relevant for end date computation, consider an record with
"lgrad’ 2 [900, 1000) implying that days’ = 5, thus if the previous week’s ’Igrad’ =
1000 then end date of the spell will equal Monday of the week incremented by 5 -
1 days, i.e. the end date will be Friday of the week. In order not to have gaps in the
spell data and in order to be consistent with ’1grad’ = 1000, we set end date equal to
the last day of the week instead of Friday of the week.

benefits from SHSS.8 Further, the analysis shows distributions of amount of re-
ceived benefits weighted by either number of weeks in the unemployment spell or
number of weeks and average ’Igrad’.

05-ILME _v9 The purpose of this SAS programme is to extract information on
the amount of benefit received for a given unemployed individual for years 2008
to 2013 using DST register ILME. The variables of interest are 'vmo_startdato’,
’vmo_slutdato’, ’vmo_indkomst_type_kode’, and all the variables which describe
the amount of benefits received. The first two variables contain information about
start date and end date, and 'vmo_indkomst_type_kode’ contain information about

Contents 75

which kind of benefit the individual received. The reason why we do not use
ILME as the source for constructing unemployment spells is that the variable
’vmo_indkomst_type_kode’ does not deliver as detailed information as we can find
in dataset OF.

We find that variables containing information about the amount of received
benefits can be negative. However, if we aggregate the amounts for a consecu-
tive period of received benefits the aggregated amounts are almost always non-
negative. We conclude that the negative amounts are corrections. Therefore, we
aggregate the amounts (negative and positive) when constructing ILME spells. An
ILME spell is constructed as a consecutive period of received benefits on the same
’vmo_indkomst_type _kode’.

ILME spells with *vmo_indkomst_type_kode’ equal to *04’, *06’, or 24’ are re-
garded as potential unemployment spells, thus these spells will be merged onto un-
employment spells constructed using OF for 2008 to 2013. We use the term potential
unemployment spells since 'vmo_indkomst_type_kode’ doe not uniquely determine
whether the ILME spell originates from a spell of unemployment, pension, leave,
etc. E.g. "'vmo_indkomst_type_kode’ = 04 is used for unemployment insurance pay-
ments, pension payments, flex job payments, etc.

We truncate the created ILME spells at 31. of December 2013. We reduce all
amount variables by the duration in days in the period 2008-2013 compared to the
total duration of the ILME spell.

The resulting dataset of this programme is

_05_ILME spells. The analysis of the programme shows the duration of ILME
spells across the different values of 'vmo_indkomst_type_kode’. Further, the analysis
delivers a count of spells for each value of "'vmo_indkomst_type_kode’.

06-OF_v92 The purpose of the OF SAS programmes is to make unemployment
spells using dataset OF. OF consists of almost all benefits for individuals aged be-
tween 16-64. We extract information for the period 2007-2013.

The purpose of this SAS programme is to extract data from OF and make unem-
ployment spells. In the next programme, we add amount of received benefit to the
constructed unemployment spells. The variables of interest are "pti_vfra’, ’pti_vtil’,
“pti_timer_per_uge’, and ’pti_tilstand_kode’. The variables contain information about
start date and end date, the amount of hours per week, and the kind of benefit re-
ceived. 8DST documents that around 2data.

We create variable *kode_agg’ which aggregates the different values of "pti_tilstand_kode’
into unemployment, active labor market programmes, pension, and leave.9 A full list
of the assignment of the values of ’pti_tilstand_kode’ to ’kode_agg’ can be found in
the appendix. We truncate the OF records if end date exceeds 31. of December 2013.
We compute the total number of hours for each record as ’days’ ’ ’pti_timer_per_uge’
where ’days’ is the truncated duration measured in days between start date and end
date. We create OF unemployment spells by compressing consecutive records with
"kode_agg’ = unemployment’. The existence of consecutive records on "kode_agg’
is due to either a change of ’pti_tilstand_kode’ (within ’kode_agg’ = ’unemploy-
ment’) or a change of ’pti_timer_per_uge’ (within same value of ’pti_tilstand_kode’).

76 Contents

We set number of hours for the compressed record equal to the sum of hours for the
consecutive records.

We create OF subspells on ’pti_tilstand _kode’ and we create a boolean variable
"bool_of_subspell” which indicates whether the OF unemployment spell has multiple
values of ’pti_tilstand _kode’.

We index OF unemployment spells by *of _spell_id’ and subspells by *of _subspell_id’.
We create a dataset containing the mapping between *of _spell_id’ and *of _subspell_id’.

The resulting datasets of this programme are

e _06_OF_spells_without_bel,
e _06_OF_subspells,
* _06_OF_subspells_mapping.

The analysis of this programme shows the distribution of average weekly hours
’spent’ in unemployment. 07-OF _before_2008_2021_v.1

The purpose of the SAS programme is to merge information about the amount of
benefits received onto each constructed OF unemployment spell. OF unemployment
spells span the period 2007- 2013. ILME span the period 2008-2013, thus we also
merge the unemployment spells with SHSS from programme 01 in order to get
amount of benefits for 2007.

We merge variables 'vmo_a_indk_am_bidrag_fri’ and 'vmo_b_indk_am_bidrag_fri’
from ILME dataset constructed in programme 05. We compute the number of days
the ILME spell overlaps the OF unemployment spell and we assign the fraction of
benefits which corresponds to the fraction between the number of overlaying days
compared to the total duration of the ILME spell. E.g., consider an OF spell span-
ning the period of 1. of January to 25. of January and an ILME spell spanning the
period 10. of January to the 30. of January with benefits equal to 8.000 DKK. The
number of overlaying days is sixteen and the total duration of the ILME spell is 21.
In this case we assign 16 21 * 8.000 DKK to the OF unemployment spell.

We merge yearly amount of received benefits from SHSS for year 2007 onto
the OF unemployment spells. As for LC unemployment spells, we split the yearly
amount of received benefits from SHSS onto the OF unemployment spells by the
fraction between duration in days in 2007 of each OF unemployment spell and the
total 2007 duration of all OF unemployment spells for a given individual.

The resulting dataset of this programme is

We plan to add active labor market programmes, pension, and leave spells in
a later version. 10We keep all ’pti_tilstand_kode’ spells as subspells, i.e. for OF
unemployment spell for which ’pti_tilstand_kode’ changes and for OF unemploy-
ment spells for which it does not change. In this way, it is possible to merge
"pti_tilstand_kode’ back onto the OF unemployment spells and e.g. to distinguish
between individuals receiving unemployment insurance benefit and individuals who
receive cash benefit.

_07_OF _spells_with_bel. The analysis of this programme shows the distribution
of variable "overlap_grad_of” which measures the percentage of days of the OF un-
employment spell that we have been able to overlay with ILME spells. We find that
90ILME spells.11 Further, boolean variable *bool_shss_merge’ indicates whether we

Contents 77

have been able to merge an SHSS spell onto OF unemployment spells in 2007. We
see that for 99OF unemployment spells in 2007 we are able to match the spell with
a SHSS spell.12 Note that when merging OF and SHSS spells, we only merge on
(Cpnr’, *year’) which is a weaker condition than when we merge OF and ILME spells
where we merge on ('pnr’, ’date’), thus the higher overlap degree was expected.

08-Spells_full_period_vl The purpose of the SAS programme is to combine the
LC and OF unemployment spells in order to construct unified unemployment spells
for the spell period 1985-2013. We input LC unemployment spells covering pe-
riod 1985-2006 from programme 04 and we input OF unemployment spells cover-
ing period 2007-2013 from programme 07. We compress LC and OF unemploy-
ment spells for which LC end date is equal to 31. of December 2006 and OF
start date is equal to 1. of January 2007. We index the resulting unemployment
spells by ’spell_id’. We create subspells for resulting unemployment spells which
originates from both a LC and an OF unemployment spell, and boolean variable
"bool_subspell_change_of_source’ indicates this event.

We keep a mapping dataset which maps (’pnr’, *spell_id’) into Cpnr’, ’Ic_spell_id’,
“of_spell_id’) such that it is possible to find corresponding LC and OF unemploy-
ment spells for all resulting unemployment spells.

The resulting datasets of this programme are

e _08_U_spells,
e _08_U_subspells,
* _08_U_mapping.

The analysis of this programme consist of a time series plot and a count of the stock
of individuals in the constructed unemployment spells at the first day of every month
between 1985-2013. 11p. 6 and 8 of the PDF. 12p. 18 of the PDF.

Appendix

List of all values of variable ’pti_tilstand_kode’ with corresponding value of
kode_agg

Unemployment

e 5010: Ledige, detaljer uoplyst

e 5020: Ledige dagpengemodtagere

e 5030: G dage

e 5035: Arbejdsmarkedsydelse

e 5080: Ledige kontanthjelpsmodtagere

* 5090: Ledighedsydelse, detaljer uoplyst

e 5100: Ledighedsydelse mellem fleksjob

* 5110: Ledighedsydelse i visitionsperioden fgr fgrste fleksjob
¢ 5140: Ledighedsydelse efter ustgttet beskaeftigelse
e 7075: Ledighedsydelse SS

e 7090: Introduktionsydelse

Pension

e 6010: Efterlgn

78 Contents

e 6020: Overgangsydelse
* 6030: Fleksydelse

¢ 6040: Delefterlgn

* 7020: Fgrtidspension SS
* 7025: Fgrtidspension

Leave

¢ 3110: Orlov til uddannelse

¢ 3120: Orlov til sabbat

* 3130: Orlov til bgrnepasning

e 4030: Sygedagpenge, detaljer uoplyst

* 5040: Feriedagpenge fra ledighed

* 5050: Feriedagpenge fra beskeftigelse

¢ 5060: Feriedagpenge o. a. ledhedsarsag

* 5070: Feriedagpenge, uoplyst

e 5120: Ledighedsydelse under ferie

e 5130: Ledighedsydelse under sygdom og barsel
* 5800: Syge pa dagpenge eller arbejdsmarkedsydelse
e 6050: Nedsatte dagpenge (par. 32)

e 7030: Sygedagpenge SS

e 7035: Sygedagpenge, beskeftigede

e 7036: Sygedagpenge, ej beskaftigede

» 7037: Sygedagpenge, detaljer uoplyst

e 7040: Barselsdagpenge, SS

e 7045: Barselsdagpenge, beskeftigede

* 7046: Barselsdagpenge, ej beskaftigede

e 7047: Barselsdagpenge, detaljer uoplyst

Aktivering

e 1010: Jobtrening

¢ 1020: Individual jobtrening
e 1030: Ansattelse med lgntilskud
* 1039: Jobrotation

e 1040: Virksomhedspraktik

* 1049: Nytteindsats

* 1050: Fleksjob

* 1055: Fleksjob, KMD-aktiv
* 1060: Fleksjob, selvstendige
* 1070: Skanejob

¢ 1075: Skanejob, KMD-aktiv
* 1080: Servicejob

e 1090: Arbejdspraktik

e 1100: Puljejob

* 1110: Rotationsans®ttelse

e 1120: Voksenlerlinge

Contents

* 1510:
e 1520:
o 1540:
e 1550:
e 1560:
e 1562:
e 1564:
e 1570:
* 1580:
e 1590:
e 1591:
e 1592:
e 1593:
: Vejl opkval gvrige forlgb
o 159s:
e 1599:
* 1600:
* 1800:
e 2010:
e 2020:
* 2030:
e 2510:
e 2512
o 2514:
e 2516:
o 2518:
e 2520:
e 2530:
e 2540:
* 3010:
* 3020:
e 4010:
e 4012:
e 4014:
* 4020:
* 7005:
* 7010:
* 7015:
e 7024:
* 7050:
e 7055:

e 1594

* 7060

Opkvalificering iflg. Integrationsloven
Ordinzr uddannelse

Voksen- og efteruddannelse

Korte vejlednings- og afklaringsforlgb
Siigt tilrettelagte projekter og uddannelsesforlgb
Serligt tilrettelagte uddannelsesforlgb
Serligt tilrettelagte projekter
Vejledning og introduktion

Serligt aktiverende forlgb

Intensiv jobsggning

Vejl opkval ordineer udd.

Vejl opkval gvrige forlgb under 4 uger
Vejl opkval gvrige forlgb over 4 uger

Mentorstgtte

Vejledning og opkvalificering

Serlig formidling

Selvvalgt uddannelse i 6 uger

Kursus i samfundsforstaelse

Danskundervisning

Serligt tilrettel. danskunderv.

Aktivering, detaljer uoplyst
Aktiveringsgodtggrelse

Forsgrgelse under vejledning, opkvalificering og virksomhedspraktik
Lgntilskud til personer i tilbud efter kapitel 12
Kontanthjelp og starthjelp under forrevalidering
Forsgg

Frivillige ulgnnede aktiviteter

Uddannelse m. voksenudd.stgtte
Etableringsydelse

Igangsatningsydelse

Revalidering, detaljer uoplyst
Revalideringsydelse med virksomhedspraktik
Lgntilskud ved revalidenters ansaettese med lgntilskud
Forrevalidering, detaljer uoplyst
Jobafklaringsforlgb

Socialtilstand detaljer uoplyst

Fgrtidspension, gammel ordning
Ressourceforlgb

Kontanthj&lp (passiv)

Kontanthjelp SS

: Revalidering SS
* 7070:
* 7080:

Forrevalidering SS
Stgtte til handicappede

79

80 Contents

We construct unemployment spells using DST registers SHSS, LC, ILME, and OF.
We use income registers (SHSS, ILME) to approximate the amount of unemploy-
ment benefit received during the unemployment spell.

The unemployment spell dataset contains the following variables

* pnr, person identifier

* startdato, start date of the unemployment spell

* slutdato, end date of the unemployment spell

* bel, amount of received unemployment benefit during the unemployment spell.

 timer, amount of hours spent in the unemployment spell.

* state, takes value *U’, "E’, or 'N’, i.e. unemployment, employment or residual
spell state *N’. In dataset U_spells, state = *U’ for all records.

» spell_id, identifier of the unemployment spell. The combination (pnr, spell_id)
uniquely identifies an unemployment spell.

* bool_subspell_change_of _source, boolean variable which indicates whether the
unemployment spell is constructed using more than one DST registers.

17 SUBSPELL_LOEN

Name of dataset: subspell_loen

General information

The dataset consists of subspells containing yearly salary and yearly number of
hours worked for a given year in the duration of the primary employment. We create
such subspells for all years in the duration of the primary employment spell. The
combination of pnr and person spell id tells which primary employment spell that
each record maps to.

Variables in dataset

e Personnummer, person id variable.

o Start date for spell, contains start date of the subspell. It might be the case that
the duration of the subspell is less than an year which occurs when the duration
of the primary employment spell is less than an year.

* End date for spell, contains end date of subspell.

e Total yearly hours worked, contains yearly number of hours worked for the
given year of the primary employment spell. We have estimated number of hours
worked using ATPdata for the period 1985-2007. We have directly used the vari-
able containing number of hours worked for the period 2008-2011 which we get
from dataset BFL.

e Total yearly salary, contains yearly salary for the given year of the primary em-
ployment spell.

* Year, contains the year of the subspell.

* Person spell id, contains an identification key which maps the subspell to the
primary employment spell from which the subspell was created.

Contents 81

18 SUBSPELL _MULT_DSKOD

Name of dataset: subspell_mult_dskod

General information

The dataset contains all *multiple dskod’ subspells. We create these subspells
since we observe that some persons are employed at the same firm id in a continuous
period while variable *dskod’/’bfl_dskod’ takes on different values. In this case we
choose a single value of *dskod’/’bfl_dskod’ for the whole primary employment spell
which corresponds to the *dskod’/’ bfl_dskod’ of the period of the spell in which the
person worked the largest amount of hours (or the where the largest salary was
obtained if two different values of ’dskod’/’bfl_dskod’ have the same amount of
hours worked).

We save all the monthly records of the primary employment spell as single *'mul-
tiple dskod’ subspells so that it is easily seen where the values of *dskod’/’bfl_dskod’
changes within the primary employment spell.

Variables in dataset

e Personnummer, person id variable.

¢ Firm id, firm id variable. We use ’senr’ from 1985-2004 and 2006-2007 and we
use “cvrnr’ for period 2005 and 2008-2011 which is due to the fact that these
variables are the ones that DST uses in Cons, Ras and BFL for the given periods.
We will later make an time consistent firm identification variable probably using
information from KOB. We observe a substantial amount of job changes in 2005
and 2008 which we think is due to the change in firm id variable. We expect the
time-consistent firm id variable to solve this issue.

o Start date for spell, contains start date for the subspell.

* End date for spell, contains end date for the subspell.

¢ Dskod, contains actual ’dskod’. Actual in the sense that we in these subspells
list the observed ’dskod’, whereas we have chosen a single value of *dskod’ for
primary employment spells.

* Arbgnr8, contains actual "arbgnr8’.

* bfl_dskod, contains actual *ajo_prod_nr_fra_prod_job’.

¢ bfl_arbgnr8 contains actual ’ajo_se_nr_fra_prod_job’.

¢ Hours worked, contains number of hours worked. We have estimated number of
hours worked using ATP-data for the period 1985-2007. We have directly used
the variable containing number of hours worked for the period 2008-2011 which
we get from dataset BFL.

Documentation Spell dataset - all_mult_dskod_subspell

» Salary, contains salary.

* Year, contains the year of the spell.

» Person spell id, identification key mapping the subspell to the matching primary
employment spell.

	 Programmes used for constructing spell data
	Henning Bunzel and Mads Hejlesen
	Overview of spell data code
	Raw Employment Spells
	Introduction
	Dataset RAW_EMPLOYMENT
	Period 1985-2007
	_02_correction_dates_using_MIAPNRM_2021_v1
	FROM 2008
	Checking_raw_employment_spells_v5

	Firm Identifiers
	Introduction
	Workplace identifier

	Spell_firm_id
	Match a CVRNR on dataset RAW_EMPLOYMENT
	OK units and workplace variables

	Spell dataset SPELL_E
	Secondary employment subspell dataset SUBSPELL_E_SEC
	SPELL_E_U_N
	Yearly and Yearly Smoothed spells
	SPELL_E_N_YEARLY_SMOOTH

	SUBSPELL_LOEN
	Constructing spell firm identifiers
	Purpose
	Spell firm identifier
	Firm-id before 2008

	ANALYSIS OF IDAN_FIDA_MIA

	Raw Unemployment spells
	Appendix

	Dataset SPELL_EUN
	Dataset SPELL_EN_YEARLY_SMOOTH
	Folder and programmes
	Description
	Constructing the Datasets

	SPELL_EUN_YEARLY
	SPELL_EUN_YEARLY_SMOOTHED
	Dataset SUBSPELL_E_SEC_EMPLOY
	Dataset SPELL_U
	SUBSPELL_LOEN
	SUBSPELL_MULT_DSKOD

